Conditional Expectation
Conditional expectation is defined in many different ways and written in various notations. We summarize the definitions and nottations about conditional expectations.
Definition. conditional probability given sigma algebra
- \((\Omega, \mathcal{F}, P)\),
- prob. sp.
- \(X: \Omega \rightarrow \mathbb{R}\),
- r.v.
- $\mathcal{G} \subset \mathcal{F}$
- $\sigma$-algebra
- $Z: \Omega \rightarrow \mathbb{R}$,
- measurable function
$Z$ is said to be conditional expectation given $\mathcal{G}$ if
\[A \in \mathcal{G}, \ \int_{A} X(\omega) \ dP(\omega) = \int_{A} Z(\omega) \ dP(\omega)\]We write $Z$ by
\[\mathrm{E} \left[ \left. X \right| \mathcal{G} \right] (\omega) := Z(\omega) .\]Definition. conditional probability given r.v.
- \((\Omega, \mathcal{F}, P)\),
- prob. sp.
- \(X: \Omega \rightarrow \mathbb{R}\),
- r.v.
- \(Y: \Omega \rightarrow \mathbb{R}\),
- r.v.
\(\mathrm{E} \left[ X \mid \sigma(Y) \right]\) is called be conditional expectation given $Y$. We write
\[\mathrm{E} \left[ \left. X \right| Y \right] (\omega) := \mathrm{E} \left[ \left. X \right| \sigma(Y) \right] (\omega) .\]Definition. conditional probability over Y=y
- \((\Omega, \mathcal{F}, P)\),
- prob. sp.
- \(X: \Omega \rightarrow \mathbb{R}\),
- r.v.
- \(Y: \Omega \rightarrow \mathbb{R}\),
- r.v.
- $g: \mathbb{R} \rightarrow \mathbb{R}$
- $\mathcal{B}(\mathbb{R})$ measurable
$g$ is said to be conditional expectation of $X$ given $Y = y$ if
\[\forall B \in \mathcal{B}(\mathbb{R}), \ \int_{Y^{-1}(B)} X(\omega) \ dP(\omega) = \int_{B} g(y) \ dP^{Y}(y) .\]We denote $g$ by
\[\mathrm{E} \left[ \left. X \right| Y = y \right] := g(y) \quad (y \in \mathbb{R}) .\]Remark
Since \(\sigma(Y) = \{Y^{-1}(B) \mid B \in \mathcal{B}(\mathbb{R})\}\), the following equation holds.
\[\begin{eqnarray} \forall B \in \mathcal{B}(\mathbb{R}), \ \int_{B} \mathrm{E} \left[ \left. X \right| Y = y \right] \ dP^{Y}(y) & = & \int_{Y^{-1}(B)} X(\omega) \ dP(\omega) \nonumber \\ & = & \int_{Y^{-1}(B)} \mathrm{E} \left[ \left. X \right| Y \right](\omega) \ dP(\omega) \nonumber \end{eqnarray}\]Hence the difference between conditional expectation of $X$ given $Y$ and conditional expectation of $X$ of given $Y=y$ is just the domain of conditional expecation.
Proposition
- $X: \Omega \rightarrow \mathbb{R}$,
- r.v.
- $\mathcal{B} \subset \mathcal{F}$
- $\sigma$-algebra
- $f: \mathbb{R} \rightarrow \mathbb{R}$
- $\mathcal{B}$ measurable
If $X$ and $\mathcal{B}$ is independent, \(\mathrm{E}( \abs{f(X)} ) < \infty\),
\[\mathrm{E} \left[ f(X) \mid \mathcal{B} \right] = \mathrm{E} \left[ f(X) \right] \mathrm{a.s.}\]proof.
Proposition
- $X: \Omega \rightarrow \mathbb{R}$,
- r.v.
- $Y: \Omega \rightarrow \mathbb{R}$,
- r.v.
- $\mathcal{B} \subset \mathcal{F}$
- $\sigma$-algebra
- $f_{(X, Y)}: \mathbb{R} \rightarrow \mathbb{R}$
- joint p.d.f. of $(X, Y)$
- $\mathcal{B}$ measurable
(1)
\[\begin{eqnarray} A & := & \{(x, y) \mid f_{X}(x) = 0\} \nonumber \\ P((X, Y) \in A) & = & 0 \nonumber \end{eqnarray}\](2)
\[\begin{eqnarray} \mathrm{E} \left[ \left. Y \right| X = a \right] = \int_{\mathbb{R}} y \frac{ f_{(X, Y)}(a, y) }{ f_{X}(a) } \ dy \end{eqnarray}\](3)
\[\begin{eqnarray} \mathrm{E} \left[ \left. Y \right| X \right](\omega) = \int_{\mathbb{R}} y \frac{ f_{(X, Y)}(X(\omega), y) }{ f_{X}(X(\omega)) } \ dy \nonumber \end{eqnarray}\]proof
(1)
\[\begin{eqnarray} P((X, Y) \in A) & = & \int_{A} f_{(X, Y)}(x, y) \ dx dy \nonumber \\ & = & \int_{\{x \mid f_{X}(x) = 0\}} \int_{\mathbb{R}} f_{(X, Y)}(x, y) \ dy dx \nonumber \\ & = & \int_{\{x \mid f_{X}(x) = 0\}} f_{(X, Y)}(x, y) \ dx \nonumber \\ & = & 0 \nonumber \end{eqnarray}\](2)
(3)
\[\begin{eqnarray} \mathrm{E} \left[ \mathrm{E} \left[ \left. Y \right| X \right] \right] & = & \mathrm{E} \left[ \int_{\mathbb{R}} y \frac{ f_{(X, Y)}(X, y) }{ f_{X}(X) } \ dy \right] \nonumber \\ & = & \int_{\mathbb{R}} \int_{\mathbb{R}} y \frac{ f_{(X, Y)}(x, y) }{ f_{X}(x) } \ dy f_{X}(x) \ dx \nonumber \\ & = & \int_{\mathbb{R}} \int_{\mathbb{R}} y f_{(X, Y)}(x, y) \ dx \ dy \nonumber \\ & = & \int_{\mathbb{R}} y f_{Y}(x, y) \ dy \nonumber \\ & = & \mathrm{E} \left[ Y \right] \nonumber \end{eqnarray}\]Remark
If the joint p.d.f. of $(X, Y)$ exists, the p.d.f. of \(\mathrm{E}\left[ Y \mid X \right]\) is
\[p_{Y \mid X}(y) := \frac{ f_{(X, Y)}(X, y) }{ f_{X}(X) } .\]Proposition 1
- $(\Omega, \mathcal{F}, P)$,
- $\mathcal{G} \subseteq \mathcal{F}$,
- sub $\sigma$-algebra
- $\mathcal{H} \subseteq \mathcal{G}$,
- sub $\sigma$-algebra
- $X, Y$,
- r.v.
- $(X_{n \in \mathbb{N}})$,
- r.v.s
(1)
\[\begin{equation} \mathrm{E} \left[ \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \right] = \mathrm{E} \left[ X \right] \end{equation}\](2)
\[\begin{eqnarray} \mathrm{E} \left[ \left. aX + bY \right| \mathcal{G} \right] = a \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] + b \mathrm{E} \left[ \left. Y \right| \mathcal{G} \right] \end{eqnarray}\](3)
\[\begin{eqnarray} X \ge 0, \ \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \ge 0 \end{eqnarray}\](4) If $0 \le X_{n}$, $X_{n} \nearrow X (n \rightarrow \infty)$, then
\[\begin{eqnarray} \mathrm{E} \left[ \left. X_{n} \right| \mathcal{G} \right] \nearrow \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \text{-a.s.} \end{eqnarray}\](5) If $X_{n} \ge 0$,
\[\begin{eqnarray} \mathrm{E} \left[ \left. \liminf_{n \rightarrow \infty} X_{n} \right| \mathcal{G} \right] \le \liminf_{n \rightarrow \infty} \mathrm{E} \left[ \left. X_{n} \right| \mathcal{G} \right] \text{-a.s.} \end{eqnarray}\](6) If $c: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function,
\[\begin{equation} c \left( \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \right) \le \mathrm{E} \left[ \left. c(X) \right| \mathcal{G} \right] \text{-a.s.} \end{equation}\](7)
\[\begin{eqnarray} \mathrm{E} \left[ \left. \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \right| \mathcal{H} \right] = \mathrm{E} \left[ \left. X \right| \mathcal{H} \right] \text{-a.s.} \end{eqnarray}\](8) If $Z$ is $\mathcal{G}$ measurable,
\[\begin{eqnarray} \mathrm{E} \left[ \left. Z X \right| \mathcal{G} \right] = Z \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \text{-a.s.} \end{eqnarray}\](9) If $\mathcal{H}$ is independent on $\sigma(X) \vee \mathcal{G}$,
\[\begin{eqnarray} \mathrm{E} \left[ \left. X \right| \mathcal{G} \vee \mathcal{H} \right] = \mathrm{E} \left[ \left. X \right| \mathcal{G} \right] \text{-a.s.} \end{eqnarray}\]