Enumerative Combinatrics
Composition
https://en.wikipedia.org/wiki/Composition_%28combinatorics%29
a composition of an integer $n$ is a way of writing $n$ as the sum of a sequence of (strictly) positive integers. Let $C_{n, k}$ be the number
\[\begin{eqnarray} C_{n, k} & := & \# \{ (X_{1}, \ldots, X_{k}) \in \mathbb{N}^{n} \mid \sum_{i=1}^{k} X_{i} = n \} \nonumber \\ & = & \left( \begin{array}{c} n - 1 \\ k - 1 \end{array} \right) \nonumber \end{eqnarray} .\]a weak composition of an integer $n$ is a way of writing $n$ as the sum of a sequence of non-negative integers.
\[\begin{eqnarray} WC_{n, k} & := & \# \{ (X_{1}, \ldots, X_{k}) \in \mathbb{Z}_{\ge 0}^{n} \mid \sum_{i=1}^{k} X_{i} = n \} \nonumber \\ & = & \left( \begin{array}{c} n + k - 1 \\ k - 1 \end{array} \right) \nonumber \\ & = & \left( \begin{array}{c} n + k - 1 \\ n \end{array} \right) \nonumber \end{eqnarray} .\]Reference
- https://en.wikipedia.org/wiki/Enumerative_combinatorics