View on GitHub

memo

Combinatorics

Combinatorics

Proposition 1

Let $\mathcal{P}_{N}$ be all permutation of $(1, \ldots, N)$.

\[\begin{eqnarray} Q_{N} & := & \{ (p_{1}, \ldots, p_{N}) \in \mathcal{P}_{N} \mid p_{i} \neq i \ (\forall i) \} \nonumber \\ \#Q_{N} & = & N! - \left( \frac{N!}{1!} - \frac{N!}{2!} + \frac{N!}{3!} - \ldots + (-1)^{N-1} \frac{N!}{N!} \right) . \end{eqnarray}\]

proof

Let $A_{i}$ be the number of permutaitons in which $i$-th number is equal to $i$.

\[\begin{eqnarray} A_{i} & := & \{ (p_{1}, \ldots, p_{N}) \in \mathcal{P}_{N} \mid p_{i} = i \} . \nonumber \end{eqnarray}\] \[\#Q_{N} = N! - \#( A_{1} \cup \ldots \cup A_{N} ) .\]

By the inclusion-exclusion principle,

\[\begin{eqnarray} A_{1} \cup \ldots \cup A_{N} & = & \sum_{i=1}^{N} \#A_{i} - \sum_{i, j, i \neq j} \#(A_{i} \cap A_{j}) + \sum_{i, j, k} \#(A_{i} \cap A_{j} \cap A_{k}) - \ldots + (-1)^{N - 1} \sum_{i_{1}, \ldots, i_{N}} \#(A_{i_{1}} \cap \cdots \cap A_{j_{N}}) \end{eqnarray}\]

Since

\[A_{i_{1}} \cap \cdots \cap A_{i_{k}} = (N - k)! ,\]

the RHS is

\[\begin{eqnarray} A_{1} \cup \ldots \cup A_{N} & = & N(N - 1)! - {N \choose 2} (N - 2)! + {N \choose 3} (N - 3)! - \ldots + (-1)^{N - 1} {N \choose N} (N - N)! \nonumber \\ & = & N! - \frac{N!}{2!} + \frac{N!}{3!} - \ldots + (-1)^{N-1} \frac{N!}{N!} \nonumber \end{eqnarray}\]
$\Box$

Reference