Catalan Number
\[\begin{eqnarray} C_{n} & := & \frac{ 1 }{ n + 1 } \left( \begin{array}{c} 2n \\ n \end{array} \right) \nonumber \\ & = & \frac{ (2n)! }{ n! (n + 1)! } \nonumber \\ & = & \prod_{k=2}^{n} \frac{ n + k }{ k } \nonumber \\ & = & \left( \begin{array}{c} 2n \\ n \end{array} \right) - \left( \begin{array}{c} 2n \\ n + 1 \end{array} \right) \nonumber \end{eqnarray}\]The first 12 values of the catalan numbers are
\[\begin{eqnarray} C_{0} & = & 1 \nonumber \\ C_{1} & = & 1 \nonumber \\ C_{2} & = & 2 \nonumber \\ C_{3} & = & 5 \nonumber \\ C_{4} & = & 14 \nonumber \\ C_{5} & = & 42 \nonumber \\ C_{6} & = & 132 \nonumber \\ C_{7} & = & 429 \nonumber \\ C_{8} & = & 1430 \nonumber \\ C_{9} & = & 4862 \nonumber \\ C_{10} & = & 16796 \nonumber \\ C_{11} & = & 58786 \nonumber \\ & \vdots & \nonumber \end{eqnarray}\]The recurrence releations are given by
\[\begin{eqnarray} C_{n} & = & \sum_{i = 0}^{n - 1} C_{i} C_{n - (i + 1)} . \nonumber \end{eqnarray}\]Reference
- Catalan number - Wikipedia
- https://klein.mit.edu/~rstan/ec/catalan.pdf