View on GitHub

memo

Chinese Remainder Theorem

Chinese Remainder Theorem

Proposition

If $a | n_{i}$ for all $i$, $ a | (n_{1} \cdots n_{k})$.

proof

$a = n_{1} m_{1}$ for some $m_{1}$. $a = n_{1} m_{1} | n_{2}$. $n_{1}$ and $n_{2}$ are coprime so $m_{1} | n_{2}$.

$\Box$

Theorem

If $a_{i}$ are pairwise coprime, the equation has the unique solution $x$ in modulo $N$.

\[\begin{eqnarray} x & \cong & a_{1} (\mathrm{mod}\ n_{1}) \\ \vdots & & \\ x & \cong & a_{n} (\mathrm{mod}\ n_{k}) \end{eqnarray}\]

Equivalently, there is an isomorphism

\[\mathbb{Z}/N \equiv \mathbb{Z}/n_{1}\mathbb{Z} \times \cdots \times \mathbb{Z}/n_{k}\mathbb{Z} .\]

proof

(Uniqueness)

Let us assume that there are two solutions $x_{1}$ and $x_{2}$. For all $i$, there exists $m_{i}$ such that $x_{1} - x_{2} = n_{i} m_{i}$.

(Existence)

Since $n_{1}$ and $n_{2}$ are coprime, there exists two integers $m_{1}$ and $m_{2}$ such that

\[m_{1} n_{1} + m_{2} n_{2} = 1.\]

Let

\[\begin{eqnarray} a_{1, 2} := a_{2} m_{1} n_{1} + a_{1} m_{2} n_{2} \label{eq_01_existence_definition} . \end{eqnarray}\] \[\begin{eqnarray} a_{1, 2} & = & a_{2} m_{1}n_{1} + a_{1} m_{2}n_{2} \nonumber \\ & = & a_{2} (1 - m_{2} n_{2}) + a_{1} m_{2}n_{2} \nonumber \\ & = & a_{2} + m_{2}n_{2}(a_{1} - a_{2}) \nonumber \end{eqnarray}\]

implying that $a_{1,2} | n_{2}$ and similarly $a_{1, 2} | n_{1}$. Now, we can reduce the equation size to $k - 1$ by defining

\[x \cong a_{1,2} (\mathrm{mod}\ n_{1}n_{2}).\]

$n_{1} n_{2}$ is pairwise coprime with $n_{3}, \ldots, n_{k}$. Hence if we can proove the state with $k=2$, the statement holds by induction. However, this has been shown by \(\eqref{eq_01_existence_definition}\).

$\Box$

Reference