View on GitHub

memo

Asymptotic notations

Asymptotic notation

Def

asymptotically tight bound

\[f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_{1} > 0, \ \exists c_{2} > 0, \ \exists n_{0} > 0, \ \forall n \ge n_{0}, \ 0 \le c_{1} \le f(n) \le c_{2} g(n)\]

asymptotic upper bound

\[f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, \ \exists n_{0} > 0, \ \forall n \ge n_{0}, \ 0 \le f(n) \le c g(n)\]

asymptotic lower bound

\[f(n) \in \Omega(g(n)) \Leftrightarrow \exists c > 0, \ \exists n_{0} > 0, \ \forall n \ge n_{0}, \ 0 \le cg(n) \le f(n)\]

upper bound but asymptotically not tight.

\[f(n) \in o(g(n)) \Leftrightarrow \forall c > 0, \ \exists n_{0} > 0, \ \forall n \ge n_{0}, \ 0 \le f(n) < cg(n)\]

lower bound but asymptotically not tight

\[f(n) \in \omega(g(n)) \Leftrightarrow \forall c > 0, \ \exists n_{0} > 0, \ \forall n \ge n_{0}, \ 0 \le cg(n) < f(n)\]

Example

Proposition(Equivalence Definitions)

\[f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)), \ f(n) \in \Omega(g(n)),\] \[f(n) \in O(g(n)) \Leftrightarrow \limsup_{n \rightarrow \infty} \frac{ f(n) }{ g(n) } < \infty\] \[f(n) \in \Omega(g(n)) \Leftrightarrow \limsup_{n \rightarrow \infty} \frac{ g(n) }{ f(n) } < \infty\] \[f(n) \in o(g(n)) \Leftrightarrow \limsup_{n \rightarrow \infty} \frac{ f(n) }{ g(n) } = 0\] \[f(n) \in \omega(g(n)) \Leftrightarrow \limsup_{n \rightarrow \infty} \frac{ g(n) }{ f(n) } = 0\]

proof.

$\Box$

Proposition(Transivity)

\[\begin{eqnarray} f(n) \in \Theta(g(n)), \ g(n) \in \Theta(h(n)) & \Rightarrow & f(n) \in \Theta(h(n)), \nonumber \\ f(n) \in O(g(n)), \ g(n) \in O(h(n)) & \Rightarrow & f(n) \in O(h(n)), \nonumber \\ f(n) \in o(g(n)), \ g(n) \in o(h(n)) & \Rightarrow & f(n) \in o(h(n)), \nonumber \\ f(n) \in \Omega(g(n)), \ g(n) \in \Omega(h(n)) & \Rightarrow & f(n) \in \Omega(h(n)), \nonumber \\ f(n) \in \omega(g(n)), \ g(n) \in \omega(h(n)) & \Rightarrow & f(n) \in \omega(h(n)), \nonumber \end{eqnarray}\]

proof.

$\Box$

Proposition(Reflexivity)

\[\begin{eqnarray} f(n) \in \Theta(f(n)), \nonumber \\ f(n) \in O(f(n)), \nonumber \\ f(n) \in \Omega(f(n)), \nonumber \end{eqnarray}\]

proof.

$\Box$

Proposition(Symmetry)

\[\begin{eqnarray} f(n) \in \Theta(g(n)), \Leftrightarrow g(n) \in \Theta(f(n)), \nonumber \end{eqnarray}\]

proof.

$\Box$

Proposition(Transpose symmetry)

\[\begin{eqnarray} f(n) \in O(g(n)), & \Leftrightarrow & g(n) \in \Omega(f(n)), \nonumber \\ f(n) \in o(g(n)), & \Leftrightarrow & g(n) \in \omega(f(n)), \end{eqnarray}\]

proof.

$\Box$