Modulo
Proposition 1
If $a \equiv b \ (\mathrm{mod}\ N)$, for any $k \in \mathbb{Z}$
\[a \equiv b + Nk \ (\mathrm{mod}\ N) .\]proof
$a - b = Nq$ for some $q \in \mathbb{Z}$.
\[a - b - Nk = N(q - k) .\]Hence
\[a \equiv b + Nk\ (\mathrm{mod}\ N) .\]Proposition 2
If $ac \equiv bc \ (\mathrm{mod}\ N)$ and $(c, N) = 1$,
\[a \equiv b \ (\mathrm{mod}\ N) .\]proof
$ac - bc = Nq$ for some $q \in \mathbb{Z}$. The left hand side is divisble by $c$. So does the right hand side. However, $(c, N) = 1$ implies that $c \mid k$.
\[a \equiv b\ (\mathrm{mod}\ N) .\]Proposition 3
If $a \equiv b \ (\mathrm{mod}\ N)$, for all $k \in \mathbb{Z}$,
\[ak \equiv bk \ (\mathrm{mod}\ Nk) .\]proof
\[a - b = N q\]for some $q \in \mathbb{Z}$.
\[ak - bk = Nk q\]shows
\[ak \equiv bk\ (\mathrm{mod}\ Nk) .\]Proposition 4
If $a \equiv b \ (\mathrm{mod}\ N)$ and $d$ is a common divisor of $a, b, N$,
\[a_{1} \equiv b_{1} \ (\mathrm{mod}\ N_{1})\]where $a = a_{1} d$, $b = b_{1} d$, $N = N_{1} d$.
proof
\[a - b = N q\]for some $q \in \mathbb{Z}$.
\[a_{1}d - b_{1}d = N_{1}d q \Leftrightarrow a_{1} - b_{1} = N_{1} q .\]Hence $a_{1} \equiv b_{1}\ (\mathrm{mod}\ N_{1})$
Proposition 5
If $a \equiv b \ (\mathrm{mod}\ N)$ and there is a positive interger $d$ such that $N = dN_{1}$,
\[a \equiv b \ (\mathrm{mod}\ d) .\]proof
$a - b = Nq$ for some $q \in \mathbb{Z}$.
\[a - b = (N_{1}q) d .\]That is, $a \equiv b\ (\mathrm{mod}\ d)$.
Proposition 6
If $a \equiv b \ (\mathrm{mod}\ N_{1})$, $a \equiv b \ (\mathrm{mod}\ N_{2})$, $\ldots$, $a \equiv b \ (\mathrm{mod}\ N_{k})$,
\[a \equiv b \ (\mathrm{mod}\ m)\]where $m$ is a least common multiple of $N_{1}$, $\ldots$, $N_{k}$.
proof
$a - b = N_{1} q$ for some $q \in \mathbb{Z}$.
\[a - b = N_{1}^{\prime} q m .\]Hence $a \equiv b\ (\mathrm{mod}\ m)$.
Proposition 7
If $p$ is a prime, for all $x, y \in \mathbb{Z}$,
\[(x + y)^{p} \equiv x^{p} + y^{p} \ (\mathrm{mod}\ p) .\]proof
\[\begin{eqnarray} (x + y)^{p} & = & \sum_{i = 0}^{p} \left( \begin{array}{c} p \\ i \end{array} \right) x^{i}y^{p - i} \nonumber \\ & = & \sum_{i = 0}^{p} \frac{ p \cdot (i + 1)! }{ (p - i)! } \left( \begin{array}{c} p \\ i \end{array} \right) x^{i}y^{p - i} \nonumber \end{eqnarray}\]If $i != 0, p$, the coeeficient is a multiple of $p$.
Proposition 8
If $p$ is a prime, for all $x_{1}$, $\ldots$, $x_{n} \in \mathbb{Z}$,
\[(x_{1} + \cdots + x_{n})^{p} \equiv x_{1}^{p} + \cdots + x_{n}^{p} \ (\mathrm{mod}\ p) .\]proof
It is easy to show by using Proposition 7 repeatedly.
Proposition 9
If $p$ is a prime, for $a$ such that $0 \le a \le p - 1$,
\[\left( \begin{array}{c} p - 1 \\ a \end{array} \right) \equiv (-1)^{a} \ (\mathrm{mod}\ p) .\]proof
Proposition 10
\[\begin{eqnarray} \lceil \frac{x}{y} \rceil & = & \lfloor \frac{x + y - 1}{y} \rfloor \nonumber \\ \lfloor \frac{x}{y} \rfloor & = & q \nonumber \\ \lfloor \frac{x}{y} \rfloor y & = & x - r \nonumber \end{eqnarray}\]where $x = yq + r$ and $0 \le r < y$.
proof
\[\begin{eqnarray} \lfloor \frac{x}{y} \rfloor & = & \lfloor \frac{yq + r}{y} \rfloor \nonumber \\ & = & q + \lfloor \frac{r}{y} \rfloor \nonumber \\ & = & q . \nonumber \end{eqnarray}\] \[\begin{eqnarray} \lfloor \frac{x}{y} \rfloor y & = & yq \\ \nonumber & = & x - r . \nonumber \end{eqnarray}\]Example 1
Find
\[(2^{100} - 1)^{99} \ (\mathrm{mod}\ 100) .\]