View on GitHub

memo

Mobius Function

Mobius Function

Definitioin Mobius Function

Let \(\mu: \mathbb{N} \rightarrow \{-1, 0, 1\}\)

\[\begin{eqnarray} \mu(1) := 1, \nonumber \\ \mu(n) := 0 \quad (\exists p: \text{ prime s.t. } p^{2} | n) \nonumber \\ \mu(n) := (-1)^{k} \quad (n = p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}) . \nonumber \end{eqnarray}\]

Theorem

\[\sum_{d | n} \mu(d) = 0.\]

proof

Let $n = p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ be the prime factorization. If the power of primes in $d$ is higher than 1, $\mu(d) = 0$. We only need to consider divisors that the power of primes is at most 1.

\[\begin{eqnarray} \sum_{d | n} \mu(d) & = & 1 - \left( \begin{array}{c} k \\ 1 \end{array} \right) + \left( \begin{array}{c} k \\ 2 \end{array} \right) - \cdots + (-1)^{r} \left( \begin{array}{c} k \\ r \end{array} \right) + \cdots \nonumber \\ & = & (1 - 1)^{k} \nonumber \\ & = & 0 \nonumber \end{eqnarray}\]
$\Box$

Theorem

\[G(n) := \sum_{d | n} F(d)\]

Then

\[F(n) = \sum_{d|n} \mu(d) G(\frac{n}{d}) .\]

proof

\[\begin{eqnarray} F(n) & = & \sum_{d|n} \mu(d) G(\frac{n}{d}) \nonumber \\ & = & \sum_{d|n} \mu(d) \sum_{d^{\prime} | \frac{n}{d}} F(d^{\prime}) \nonumber \\ & = & \sum_{d|n} \left( \sum_{d^{\prime} | \frac{n}{d}} F(d^{\prime}) \right) \mu(d) \nonumber \end{eqnarray}\]

Since

\[\begin{eqnarray} \{ (d^{\prime}, d) \mid d^{\prime} | \frac{n}{d}, \ d | n \} & = & \{ (d^{\prime}, d) \mid d | \frac{n}{d^{\prime}}, \ d^{\prime} | n \} \quad (\because d^{\prime} | \frac{n}{d}, d | n \Leftrightarrow d | \frac{n}{d^{\prime}}, d^{\prime} | n ), \nonumber \end{eqnarray}\] \[\begin{eqnarray} \sum_{d|n} \left( \sum_{d^{\prime} | \frac{n}{d}} F(d^{\prime}) \right) \mu(d) & = & \sum_{d^{\prime}|n} \left( \sum_{d | \frac{n}{d^{\prime}}} F(d^{\prime}) \right) \mu(d) \nonumber \\ & = & \sum_{d^{\prime}|n} \left( \sum_{d | \frac{n}{d^{\prime}}} \mu(d) \right) F(d^{\prime}) \nonumber \\ & = & \mu(1) F(n) \nonumber \\ & = & F(n) . \nonumber \end{eqnarray}\]
$\Box$

Reference