View on GitHub

memo

Formal Power Series

Formal Power Series

Division by FPS

\[\begin{eqnarray} f(x) & = & \sum_{n=0}^{\infty} a_{n}x^{n} \nonumber \\ g(x) & = & \sum_{n=0}^{\infty} b_{n}x^{n} \nonumber \\ h(x) & = & \sum_{n=0}^{\infty} c_{n}x^{n} \end{eqnarray}\]

The division $f(x) / g(x)$ is $h(x)$ which statisfies

\[\begin{eqnarray} c_{n} & = & \frac{1}{b_{0}} \left( a_{n} - \sum_{k=1}^{n} b_{k}c_{n - k} \right) \nonumber \end{eqnarray}\]

Example 1

\[\begin{eqnarray} c_{0} & = & \frac{1}{1} \nonumber \\ c_{1} & = & \frac{1}{1} \left( 0 - (-b) \right) \nonumber \\ & = & b \nonumber \\ c_{2} & = & \frac{1}{1} \left( 0 - (-b) b \right) & = & b^{2} \nonumber \\ c_{3} & = & \frac{1}{1} \left( 0 - (-b) b^{2} \right) & = & b^{3} \nonumber \\ c_{k} & = & b^{k} \end{eqnarray}\]

Example2

\[\begin{eqnarray} c_{0} & = & \frac{1}{b_{0}} \nonumber \\ c_{1} & = & - \frac{1}{b_{0}} b_{1} \frac{1}{b_{0}} = - b_{1} \frac{1}{b_{0}^{2}} \nonumber \\ c_{2} & = & \frac{1}{b_{0}} \left( + b_{1} b_{1} \frac{1}{b_{0}^{2}} - b_{2} \frac{1}{b_{0}} \right) = b_{1}^{2} \frac{1}{b_{0}^{3}} - b_{2} \frac{1}{b_{0}^{2}} \nonumber \\ c_{3} & = & \frac{1}{b_{0}} \left( - b_{1} \left( b_{1}^{2} \frac{1}{b_{0}^{3}} - b_{2} \frac{1}{b_{0}^{2}} \right) - b_{2} \left( - b_{1} \frac{1}{b_{0}^{2}} \right) - b_{3} \frac{1}{b_{0}} \right) = - b_{1}^{3} \frac{1}{b_{0}^{4}} + b_{1} b_{2} \frac{1}{b_{0}^{3}} + b_{2} b_{1} \frac{1}{b_{0}^{3}} - b_{3} \frac{1}{b_{0}^{2}} \nonumber \\ c_{n} & = & \frac{1}{b_{0}} \left( - \sum_{k=1}^{n} b_{k} c_{n - k} \right) \nonumber \end{eqnarray}\]

Reference