Euler function
Definition
$\varphi: \mathbb{N} \rightarrow \mathbb{N}$
\[\varphi(n) := \# \{ k \in \{1, \ldots, n\} \mid (k, n) = 1 \} .\]$\varphi$ is called Euler funciton.
■
Theorem
- $n \in \mathbb{N}$,
- \(n = p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}\),
- prime factorization of $n$
(1)
\[\varphi(n) = (p_{1}^{\alpha_{1}} - p_{1}^{\alpha_{1} - 1}) (p_{2}^{\alpha_{2}} - p_{2}^{\alpha_{2} - 1}) \cdots (p_{k}^{\alpha_{k}} - p_{k}^{\alpha_{k} - 1}) .\](2)
\[\varphi(n) = n \left( 1 - \frac{1}{p_{1}} \right) \left( 1 - \frac{1}{p_{2}} \right) \cdots \left( 1 - \frac{1}{p_{k}} \right) .\](3)
\[\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}, \ \varphi(p) = p - 1 .\](4) If $(m, n) = 1$,
\[\phi(mn) = \phi(m)\phi(n) .\]proof
(4)
Let $S_{m}, S_{n}, S_{mn}$ be a set of coset representatives.
\[S_{m} := \{ 0, \ldots, m \} .\] \[S_{m}^{*} := \{ k \in S_{m} \mid (k, m) = 1 \} .\]By the Chinese remainder theorem, for any $x \in S_{m}$ and $y \in S_{m}$, there is unique $z \in S_{mn}$ such that
\[\begin{eqnarray} z & \cong & x \ (\mathrm{mod}\ n) \nonumber \\ z & \cong & y \ (\mathrm{mod}\ m) . \nonumber \end{eqnarray}\]Moreover,
\[(z, mn) = 1\]if and only if
\[(x, m) = 1, \ (y, n) = 1.\]Indeed, if $x | m$, $(z, mn) = (x + mk, mn) = x$.
On the other hand, if $(z, mn) = d > 1$, $(z, mn) = (x + mk, mn) = d$. This implies $d | m$ or $d | n$. If $d | m$, $(x, m) \neq 1$. Also, if $d | n$, $(y, n) \neq 1$.
Therefore,
\[\begin{eqnarray} \varphi(mn) & = & \# \{ k \in \{1, \ldots, mn\} \mid (k, mn) = 1 \} \nonumber \\ & = & \# \{ k \in \{1, \ldots, mn\} \mid (k, m) = 1 \text{ and } (k, n) = 1 \} \nonumber \end{eqnarray}\](3)
If $p$ is prime, $\varphi(p) = p - 1$. By the uniqueness of prime factorization, the divisor of $p^{\alpha}$ is only the multiples of $p$. The number of the multiples of $p$
\[| \{ k \in \{1, \ldots, p^{\alpha}\} \mid (k, p^{\alpha}) = 1 \} | = |\{1, \ldots, p^{\alpha}\} | - |\{p, 2p, \ldots, p^{\alpha}\}| = p^{\alpha} - p^{\alpha - 1} .\](1)
By (3) and (4),
\[\varphi(n) = \varphi(p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}) = (p_{1}^{\alpha_{1}} - p_{1}^{\alpha_{1} - 1}) \cdots (p_{k}^{\alpha_{k}} - p_{k}^{\alpha_{k} - 1}) .\]$\Box$