Absolute Continuity
Definition 1
- $(X, d)$
- metric space
- $I := [a, b]$,
- $f: I \rightarrow X$,
$f$ is said to be absolute continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that
\[([a_{i}, b_{i}])_{i = 1, \ldots, k} \in J, \ \sum_{i=1}^{k} \abs{ b_{i} - a_{i} } < \delta \Rightarrow \sum_{i=1}^{k} d(f(b_{i}) - f(a_{i})) < \epsilon .\]We denote the collection of all absolute functions by $\mathrm{AC}(I; X)$.
■