View on GitHub

memo

Machine Learning Metrics

Machine Learning Metrics

Regression

\[\sqrt{ \frac{ 1 }{ n } \sum_{i=1}^{n} (y_{i} - y_{i})^{2} }\] \[\frac{ 1 }{ n } \sum_{i=1}^{n} |y_{i} - y_{i}|\] \[\frac{ 1 }{ n } \sum_{i=1}^{n} (y_{i} - y_{i})\]

Classification

\[\begin{eqnarray} \mathrm{TP} & := & \sum_{i=1}^{n} 1_{\{ f(x_{i}) + y_{i} = 2 \}} \nonumber \\ & = & \sum_{i=1}^{n} 1_{\{ f(x_{i}) = 1 \}} 1_{\{ y_{i} = 1 \}} \nonumber \\ \mathrm{TN} & := & \sum_{i=1}^{n} 1_{\{ f(x_{i}) = 0 \}} 1_{\{ y_{i} = 0 \}} \nonumber \\ & = & \sum_{i=1}^{n} \left( 1 - 1_{\{ f(x_{i}) = 1 \}} \right) 1_{\{ y_{i} = 0 \}} \nonumber \\ & = & \sum_{i=1}^{n} 1_{\{ y_{i} = 0 \}} - \mathrm{FP} \nonumber \\ \mathrm{FP} & := & \sum_{i=1}^{n} 1_{\{ f(x_{i}) = 1 \}} 1_{\{ y_{i} = 0 \}} \nonumber \\ \mathrm{FN} & := & \sum_{i=1}^{n} 1_{\{ f(x_{i}) = 0 \}} 1_{\{ y_{i} = 1 \}} \nonumber \end{eqnarray} .\] \[\begin{eqnarray} \mathrm{Acc} & := & \frac{ \mathrm{TP} + \mathrm{TN} }{ \mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN} } \nonumber \\ & = & \frac{ \mathrm{TP} + \mathrm{TN} }{ n } \nonumber \\ \mathrm{Precsion} & = & \frac{ \mathrm{TP} }{ \mathrm{TP} + \mathrm{FP} } \nonumber \\ \mathrm{Recall} & = & \frac{ \mathrm{TP} }{ \mathrm{TP} + \mathrm{FN} } \end{eqnarray}\] \[\begin{eqnarray} \mathrm{FPR} & := & \frac{ \mathrm{FP} }{ \mathrm{FP} + \mathrm{TN} } \nonumber \\ \mathrm{FDR} & := & \frac{ \mathrm{FP} }{ \mathrm{FN} + \mathrm{TP} } \end{eqnarray}\]

Unsupervisised

Others

Reference