View on GitHub

memo

loss function

loss function

Cross entropy

\[\begin{eqnarray} H(P^{X}, P^{Y}) & := & - \int_{\Omega} \log \frac{ d P^{Y} }{ d P^{X} } (x) \ P(dx) \nonumber \\ & = & - \mathrm{E}_{P^{X}} \left[ - \log \frac{ d P^{Y} }{ d P^{X} } \right] \end{eqnarray}\]

binary crossentropy

\[\begin{eqnarray} p \log(q) + (1 - p) \log(1 - q) \end{eqnarray}\]

categorical crossentropy

\[\begin{eqnarray} H(P^{X} , P^{Y}) & := & \mathrm{E}_{P^{X}} \left[ - \log \frac{d P^{X}}{d P^{Y}} \right] \nonumber \\ & = & - \sum_{\omega \in \Omega} \left( P^{X}(\{ \omega \}) \log P^{Y}(\{ \omega \}) \right) \end{eqnarray}\]

Softmax function

$j$ -th softmax

\[\begin{eqnarray} f(x; j) & := & \frac{ \exp \left( x^{\mathrm{T}} w_{j} \right) }{ \sum_{i=1}^{n} \exp \left( x^{\mathrm{T}} w_{i} \right) } \nonumber \\ P(Y=j \mid X = x) & := & \frac{ \exp \left( x_{j}^{\mathrm{T}} w_{j} \right) }{ \sum_{i=1}^{n} \exp \left( x_{i}^{\mathrm{T}} w_{i} \right) } \nonumber \end{eqnarray}\]

Binary Logistic function

\[\begin{eqnarray} f(x; 1) & := & \frac{ \exp \left( x^{\mathrm{T}} w_{1} \right) }{ \exp \left( x^{\mathrm{T}} w_{1} \right) + \exp \left( x^{\mathrm{T}} w_{2} \right) } \nonumber \\ & = & \frac{ \exp \left( x^{\mathrm{T}} (w_{1} - w_{2}) \right) }{ \exp \left( x^{\mathrm{T}} (w_{1} - w_{2}) \right) + 1 } \nonumber \\ & = & \frac{ 1 }{ 1 + \exp \left( x^{\mathrm{T}} (w_{2} - w_{1}) \right) } \nonumber \\ P(Y=1 \mid X = x) & := & f(x; 1) \nonumber \\ P(Y=2 \mid X = x) & := & 1 - f(x; 1) \nonumber \end{eqnarray}\]

Reference