loss function
Cross entropy
- \((\Omega, \mathcal{F})\),
- measurable space
- $X: \Omega \rightarrow \mathbb{R}$
- r.v.
- $Y: \Omega \rightarrow \mathbb{R}$
- r.v.
- \(P^{X}: \mathcal{F} \rightarrow [0, 1]\),
- absolutely continuous to $\mu$
- distribution of $X$
- \(P^{Y}: \mathcal{F} \rightarrow [0, 1]\),
- absolutely continuous to $\mu$
- distribution of $Y$
binary crossentropy
\[\begin{eqnarray} p \log(q) + (1 - p) \log(1 - q) \end{eqnarray}\]categorical crossentropy
- \((\Omega, \mathcal{F})\),
- $\mathrm{card}(\Omega) < \infty$
- \(P^{X}\),
- \(P^{Y}\),
Softmax function
$j$ -th softmax
\[\begin{eqnarray} f(x; j) & := & \frac{ \exp \left( x^{\mathrm{T}} w_{j} \right) }{ \sum_{i=1}^{n} \exp \left( x^{\mathrm{T}} w_{i} \right) } \nonumber \\ P(Y=j \mid X = x) & := & \frac{ \exp \left( x_{j}^{\mathrm{T}} w_{j} \right) }{ \sum_{i=1}^{n} \exp \left( x_{i}^{\mathrm{T}} w_{i} \right) } \nonumber \end{eqnarray}\]■
Binary Logistic function
- Other names
- Binary logistic probability function.
- softmax function
- Special case of softmax function
- Binary logistic regression function
■