View on GitHub

memo

F-tests

F-tests

Definition

F-distribution

\[F := \frac{ U_{1}/N }{ U_{2}/M } .\]

Distribution of $F$ is said to be $F$-distribution with $N, M$ degree of freedom. We denote $F(N, M)$.

Two sample F test for population variances

$F$検定では、真の分布が正規分布の2つの分散が一致するか検定する。 $F$分布は$N$及び$M$によってのみ決まる。 つまり、正規分布の平均によらず、分散の検定ができる。

Example

\[\begin{eqnarray} f = \frac{ s_{X}^{2} }{ s_{Y}^{2} } \end{eqnarray}\]

Theorem 25

Then

\[F := \frac{ V_{N}(X_{1}, \ldots, X_{N}) }{ V_{M}(Y_{1}, \ldots, Y_{M}) } \sim F(N - 1, M - 1) .\]

proof.

Let

\[\begin{eqnarray} U_{X} & := & \frac{ (N-1) V_{N}(X_{1}, \ldots, X_{N}) }{ \sigma^{2} }, \nonumber \\ U_{Y} & := & \frac{ (M-1) V_{M}(Y_{1}, \ldots, Y_{N}) }{ \sigma^{2} } . \end{eqnarray}\]

\(U_{X} \sim \chi^{2}(N-1)\), \(U_{Y} \sim \chi^{2}(M-1)\). Thus,

\[\begin{eqnarray} F & = & \frac{ V_{N}(X_{1}, \ldots, X_{N}) }{ V_{M}(Y_{1}, \ldots, Y_{M}) } \nonumber \\ & = & \frac{ V_{N}(X_{1}, \ldots, X_{N}) }{ V_{M}(Y_{1}, \ldots, Y_{M}) } \frac{ \frac{ 1 }{ \sigma^{2} } }{ \frac{ 1 }{ \sigma^{2} } } \frac{ \frac{ (N - 1) }{ (N - 1) } }{ \frac{ (M - 1) }{ (M - 1) } } \nonumber \\ & = & \frac{ \frac{ (N - 1) V_{N}(X_{1}, \ldots, X_{N}) }{ \sigma^{2} } }{ \frac{ (M - 1) V_{M}(Y_{1}, \ldots, Y_{M}) }{ \sigma^{2} } } \frac{ \frac{ 1 }{ (N - 1) } }{ \frac{ }{ (M - 1) } } \nonumber \\ & = & \frac{ \frac{ U_{X} }{ (N - 1) } }{ \frac{ U_{Y} }{ (M - 1) } } \nonumber \end{eqnarray}\]

The distribution of $F$ is $F(N - 1, M - 1)$.

$\Box$

Reference