F-tests
Definition
F-distribution
- $N, M \in \mathbb{N}$,
- $U_{1} \sim \chi^{2}(N)$,
- $U_{2} \sim \chi^{2}(M)$,
- $U_{1}, U_{2}$ are independant
Distribution of $F$ is said to be $F$-distribution with $N, M$ degree of freedom. We denote $F(N, M)$.
Two sample F test for population variances
$F$検定では、真の分布が正規分布の2つの分散が一致するか検定する。 $F$分布は$N$及び$M$によってのみ決まる。 つまり、正規分布の平均によらず、分散の検定ができる。
- $X \sim \mathrm{N}(\mu_{X}, \sigma_{X}^{2})$,
- $Y \sim \mathrm{N}(\mu_{Y}, \sigma_{Y}^{2})$,
- null hypothesis is that variances of $X$ and $Y$ are equal
- $X$, $Y$ are independent
- $\sigma_{X}$, $\sigma_{Y}$ are unkown
Example
- $n \in \mathbb{N}$,
- the sample size for $X$
- $m \in \mathbb{N}$,
- the sample size for $Y$
- $\alpha \in (0, 1)$,
- significance level
- $s_{X}^{2}$,
- sample variance of $X$
- $s_{Y}^{2}$,
- sample variance of $Y$
- (1) State the hypothesis
- null hypothesis
- $H_{0}:\sigma_{X} = \sigma_{Y} $
- alternative hypothesis
- (a) $H_{0}:\sigma_{X} \neq \sigma_{Y}$
- (b) $H_{0}:\sigma_{X} > \sigma_{Y}$
- (c) $H_{0}:\sigma_{X} < \sigma_{Y}$
- null hypothesis
- (2) compute the test statistic
- (3) Compute $p$ value
- $F \sim \mathrm{F}(n - 1, m - 1)$,
- (a) \(p := 2P(F \ge f)\)
- (b) $p := P(F \ge f)$
- (c) $p := P(F \ge f)$
- (4)
- If $p < \alpha$, reject $H_{0}$,
- otherwise, fail to reject $H_{0}$,
Theorem 25
- $X \sim \mathrm{N}(\mu_{X}, \sigma^{2})$,
- $Y \sim \mathrm{N}(\mu_{Y}, \sigma^{2})$,
- \(X_{1}, \ldots, X_{N}\),
- $X$のi.i.d
- \(Y_{1}, \ldots, Y_{M}\),
- $Y$のi.i.d
Then
\[F := \frac{ V_{N}(X_{1}, \ldots, X_{N}) }{ V_{M}(Y_{1}, \ldots, Y_{M}) } \sim F(N - 1, M - 1) .\]proof.
Let
\[\begin{eqnarray} U_{X} & := & \frac{ (N-1) V_{N}(X_{1}, \ldots, X_{N}) }{ \sigma^{2} }, \nonumber \\ U_{Y} & := & \frac{ (M-1) V_{M}(Y_{1}, \ldots, Y_{N}) }{ \sigma^{2} } . \end{eqnarray}\]\(U_{X} \sim \chi^{2}(N-1)\), \(U_{Y} \sim \chi^{2}(M-1)\). Thus,
\[\begin{eqnarray} F & = & \frac{ V_{N}(X_{1}, \ldots, X_{N}) }{ V_{M}(Y_{1}, \ldots, Y_{M}) } \nonumber \\ & = & \frac{ V_{N}(X_{1}, \ldots, X_{N}) }{ V_{M}(Y_{1}, \ldots, Y_{M}) } \frac{ \frac{ 1 }{ \sigma^{2} } }{ \frac{ 1 }{ \sigma^{2} } } \frac{ \frac{ (N - 1) }{ (N - 1) } }{ \frac{ (M - 1) }{ (M - 1) } } \nonumber \\ & = & \frac{ \frac{ (N - 1) V_{N}(X_{1}, \ldots, X_{N}) }{ \sigma^{2} } }{ \frac{ (M - 1) V_{M}(Y_{1}, \ldots, Y_{M}) }{ \sigma^{2} } } \frac{ \frac{ 1 }{ (N - 1) } }{ \frac{ }{ (M - 1) } } \nonumber \\ & = & \frac{ \frac{ U_{X} }{ (N - 1) } }{ \frac{ U_{Y} }{ (M - 1) } } \nonumber \end{eqnarray}\]The distribution of $F$ is $F(N - 1, M - 1)$.
$\Box$