View on GitHub

memo

Chi-square tests

Chi-square tests

Chi-Square test for the Population Variance

Example

\[\begin{eqnarray} \bar{x} & := & \bar{X}_{N}(\omega) \nonumber \\ s & := & \sqrt{V_{n}(X_{1}, \ldots, X_{N})(\omega)} \nonumber \end{eqnarray}\]

The steps for chi-square test for population variance are as follos;

\[\begin{eqnarray} y & = & \frac{ (N - 1)s^{2} }{ \sigma_{0}^{2} } \end{eqnarray}\]

Theory

Corollary 9.

Then

\[\begin{eqnarray} \frac{ (N - 1) V_{N}(X_{1}, \ldots, X_{N}) }{ \sigma^{2} } & \sim & \chi(N - 1) \nonumber \end{eqnarray}\]

proof.

By Theorem 19.

$\Box$

Chi-square test for goodness of fit

The test is also known as Pearson’s chi-squared test. This approximation known as Peason’s approximation.

Example

The steps for chi-square test for goodness of fit are as follows;

\[\begin{eqnarray} j \in \{1, \ldots, m\}, \ u_{j} & = & \sum_{i :x_{i} = j} x_{i} \nonumber \\ w & = & \sum_{i=1}^{m} \frac{ (u_{j} - n p_{j})^{2} }{ Np_{j} } \nonumber \end{eqnarray}\]

Theory

Theorem21

\(X_{1}, \ldots, X_{N}\), \(Y_{1}, \ldots, Y_{N}\)が正規分布に従っているとする。 また、$X_{i}$と$Y_{i}$が各$i$について独立とする。 このとき、

\[Z := \frac{ \bar{D}_{N} - \delta }{ \sqrt{ \frac{ V_{N}(D_{1}, \ldots, D_{N}) }{ N } } } \sim t(N - 1)\]

は、 ここで、

proof.

$\Box$

Proposition 3

\[\begin{eqnarray} j = 1, \ldots, m, \ \bar{p}_{j} & := & \sum_{i:x_{i}=j} \frac{ 1 }{ n } \nonumber \\ W & := & \sum_{i=1}^{n} \frac{ (X_{i} - n \bar{p}_{i})^{2} }{ n \bar{p}_{i} } \nonumber \end{eqnarray}\]

Then $W$ has an approximate $\chi^{2}$ distribution with

proof.

$\Box$

Chi square tests for Independence

Chi square tests for Homegenity

Reference