View on GitHub

memo

Cross Validation

Cross Validation

\[\begin{eqnarray} y_{k} & = & f(X_{k}) + \sigma_{k} y_{k} \nonumber \\ \left( \begin{array}{c} y_{k}^{1} \\ \vdots \\ y_{k}^{n} \end{array} \right) & = & \left( \begin{array}{c} f(x_{k}^{1}) \\ \vdots \\ f(x_{k}^{n}) \end{array} \right) + \sigma_{k} \left( \begin{array}{c} Z_{k}^{1} \\ \vdots \\ Z_{k}^{1} \end{array} \right) \end{eqnarray}\]

Let $C_{1}$ be the segmentation for learning data and $C_{2}$ be the segmentation for testing data defined as

\[\begin{eqnarray} C_{1}(X_{k}) & = & (x_{j,k}^{i})_{j=1,\ldots,r}^{i=1,\ldots,N_{1}} \nonumber \\ C_{2}(X_{k}) & = & (x_{j,k}^{i})_{j=1,\ldots,r}^{i=N_{1}+1,\ldots,N} . \nonumber \end{eqnarray}\]

We indulge to use $C_{1}$ and $C_{2}$ for other variables;

\[\begin{eqnarray} C_{1}(y_{k}) & = & (y_{k}^{i})_{j=1,\ldots,r}^{i=1,\ldots,N_{1}} \nonumber \\ C_{1}(Z_{k}) & = & (Z_{k}^{i})_{j=1,\ldots,r}^{i=1,\ldots,N_{1}} . \nonumber \end{eqnarray}\]

It is enough that the segmentations only splits data into the first $N_{1}$ of the data and the rest because we assume that the data itself might vary in each cross validation step.

Let $e_{k} \in \mathbb{R}^{N_{1}}$ be the learning error defined as

\[\begin{eqnarray} E_{k}^{C} & := & g(C_{1}(X_{k}); C_{1}(X_{k}), C_{1}(y_{k})) - C_{1}(y_{k}) \nonumber \\ E_{k}^{T} & := & g(C_{2}(X_{k}); C_{1}(X_{k}), C_{1}(y_{k})) - C_{2}(y_{k}) \nonumber \\ E_{k}^{S} & := & g(C_{1}(X_{k}); C_{1}(X_{k}), C_{1}(y_{k})) - g(C_{2}(X_{k}); C_{2}(X_{k}), C_{2}(y_{k})) \nonumber \end{eqnarray}\]

Theorem1

\[\begin{eqnarray} \mathrm{E} \left[ \norm{E_{k}^{C}} \right] \le \mathrm{E} \left[ \norm{E_{k}^{T}} \right] + \mathrm{E} \left[ \norm{E_{k}^{S}} \right] \end{eqnarray}\]

proof

$\Box$

Reference