Cross Validation
- $N \in \mathbb{N}$,
- the number of data
- $M \in \mathbb{N}$,
- the number of cross valiation
- $r \in \mathbb{N}$,
- the input dimension
- $X_{k} := (x_{j,k}^{i})_{j=1, \ldots, r}^{i=1,\ldots,N}\ (k = 1, \ldots, r)$,
- $y_{k} := (y_{k}^{i})^{i=1,\ldots,N} \ (k = 1, \ldots, r)$,
- $f: \mathbb{R}^{r} \rightarrow \mathbb{R}$,
- true model
- $g(\cdot; X_{k}, y_{k}): \mathbb{R}^{r} \rightarrow \mathbb{R}$,
- the prediction model learned from data $(X_{k}, y_{k})$,
- $\sigma_{k} > 0$,
- deviation of $k$-th set of cross validation
- $Z_{k} := (Z_{k}^{i})^{i=1,\ldots,n}$,
- I.I.D. standard normal r.v.
- $N_{1}, N_{2} \le N$,
- such that $N_{1} + N_{2} = N$,
- $N_{1}$ is the number of learning/training data
- $N_{2}$ is the number of testing data
Let $C_{1}$ be the segmentation for learning data and $C_{2}$ be the segmentation for testing data defined as
\[\begin{eqnarray} C_{1}(X_{k}) & = & (x_{j,k}^{i})_{j=1,\ldots,r}^{i=1,\ldots,N_{1}} \nonumber \\ C_{2}(X_{k}) & = & (x_{j,k}^{i})_{j=1,\ldots,r}^{i=N_{1}+1,\ldots,N} . \nonumber \end{eqnarray}\]We indulge to use $C_{1}$ and $C_{2}$ for other variables;
\[\begin{eqnarray} C_{1}(y_{k}) & = & (y_{k}^{i})_{j=1,\ldots,r}^{i=1,\ldots,N_{1}} \nonumber \\ C_{1}(Z_{k}) & = & (Z_{k}^{i})_{j=1,\ldots,r}^{i=1,\ldots,N_{1}} . \nonumber \end{eqnarray}\]It is enough that the segmentations only splits data into the first $N_{1}$ of the data and the rest because we assume that the data itself might vary in each cross validation step.
Let $e_{k} \in \mathbb{R}^{N_{1}}$ be the learning error defined as
\[\begin{eqnarray} E_{k}^{C} & := & g(C_{1}(X_{k}); C_{1}(X_{k}), C_{1}(y_{k})) - C_{1}(y_{k}) \nonumber \\ E_{k}^{T} & := & g(C_{2}(X_{k}); C_{1}(X_{k}), C_{1}(y_{k})) - C_{2}(y_{k}) \nonumber \\ E_{k}^{S} & := & g(C_{1}(X_{k}); C_{1}(X_{k}), C_{1}(y_{k})) - g(C_{2}(X_{k}); C_{2}(X_{k}), C_{2}(y_{k})) \nonumber \end{eqnarray}\]Theorem1
\[\begin{eqnarray} \mathrm{E} \left[ \norm{E_{k}^{C}} \right] \le \mathrm{E} \left[ \norm{E_{k}^{T}} \right] + \mathrm{E} \left[ \norm{E_{k}^{S}} \right] \end{eqnarray}\]proof
$\Box$