B.3 Conditioning
B.3.3
Corollary B.55
- $(S, \mathcal{A}, \mu)$,
- probability sp.
- $(\mathcal{Y}, \mathcal{B}_{2})$,
- \(\forall x \in \mathcal{X}, \{x\} \in \mathcal{B}_{2}\),
- $(\mathcal{X}, \mathcal{B})$,
proof
$\Box$
B.3.4 Conditional Independence
Definition B.57
- $I$
- inde set
- $Y$
- r.v.
- \(\{X_{i}\}_{i \in I}\),
- r.v.
- \(\mathcal{A}_{i} := \sigma(X_{i})\),
\(\{X_{i}\}\) are said to be conditionally independent given $Y$ if
\[\forall n \in \mathbb{N}, \ i_{1}, \ldots_{n}, \ A_{1} \in \mathcal{A}_{i_{1}}, \ldots, A_{n} \in \mathcal{A}_{i_{n}}, \ \mu \left( \bigcup_{j=1}^{n} A_{j} \mid Y \right) = \prod_{j=1}^{n} \mu \left( A_{j} \mid Y \right) \text{-a.s.}\]If $Y$ is constant almost surely, we say \(\{X_{i}\}\) are independent.
■
B.3.5 The Law of Total Probability
Theorem B.70 Law of total probability
- $(\mathcal{S}, \mathcal{A}, \mu)$,
- probability sp.
- $Z$
- r.v.
- \(\mathrm{E}[ |Z| ] < \infty\),
proof
$\Box$
Corollary B.71
proof
$\Box$
Corollary B.72
proof
$\Box$
Theorem B.73
- $(\mathcal{S}, \mathcal{A}, \mu)$,
- probability sp.
- $\mathcal{C} \subseteq \mathcal{B} \subseteq \mathcal{A}$,
- $\mathcal{C}, \mathcal{B}$ are sub $\sigma$-algebra
- $Z: S \rightarrow \mathbb{R}$,
- measurable
- \(\mathrm{E}[ |Z| ] < \infty\),
Then following statements are equivalent;
- (i) there exists a version of \(\mathrm{E}[Z \mid \mathcal{B}]\) which is $\mathcal{C}$ measurable
- (ii)
proof
(i) $\Rightarrow$ (ii) Suppose that $W$ is a version of \(\mathrm{E}[Z \mid \mathcal{B}]\) which is $\mathcal{C}$ measurable. We have
\[\mathrm{E}[Z \mid \mathcal{B}] = W \ \mu \text{-a.s.}\]Then
\[C \in \mathcal{C}, \ \int_{C} W(s) \ \mu(ds) = \int_{C} \mathrm{E}[Z \mid \mathcal{B}](s) \ \mu(ds) = \int_{C} Z(s) \ \mu(ds) = \int_{C} \mathrm{E}[Z \mid \mathcal{C}](s) \ \mu(ds) .\](i) $\Leftarrow$ (ii)
$\mathrm{E}[Z \mid C]$ is a version of $\mathrm{E}[Z \mid \mathcal{B}]$.
$\Box$