View on GitHub

memo

Set Estimation

5.2 Set Estimation

5.2.1 Confidence Sets

Definition 5.47 confidense set

The function $R$ is said to be a coefficient $\gamma$ confidence set for $g(\Theta)$ if for every $\theta \in \Omega$,

\[P_{\theta}^{\prime}(g(\theta) \in R(X)) \ge \gamma .\]

The confidence set $R$ is said to be exact if

\[\forall \theta \in \Omega, \ P_{\theta}^{\prime}(g(\theta) \in R(X)) = \gamma .\]

The confiddece set $R$ is said to be conservative if

\[\forall \theta \in \Omega, \ \inf_{\theta \in \Omega} P_{\theta}^{\prime}(g(\theta) \in R(X)) > \gamma .\]

Proposition 5.48

proof

$\Box$