5.2 Set Estimation
- $g: \Theta \rightarrow \mathbb{R}$,
- $\Theta$,
5.2.1 Confidence Sets
Definition 5.47 confidense set
- $g: \Omega \rightarrow G$
- $\eta := 2^{G}$,
- $R: \mathcal{X} \rightarrow \eta$,
- $\gamma \in [0, 1]$,
- given
The function $R$ is said to be a coefficient $\gamma$ confidence set for $g(\Theta)$ if for every $\theta \in \Omega$,
- \(\{x \mid g(\theta) \in R(x)\}\) is measurale, and
The confidence set $R$ is said to be exact if
\[\forall \theta \in \Omega, \ P_{\theta}^{\prime}(g(\theta) \in R(X)) = \gamma .\]The confiddece set $R$ is said to be conservative if
\[\forall \theta \in \Omega, \ \inf_{\theta \in \Omega} P_{\theta}^{\prime}(g(\theta) \in R(X)) > \gamma .\]■
Proposition 5.48
- $g: \Omega \rightarrow G$
proof
$\Box$