3.2 Classical Decision Theory
3.2.2 Admissibility
Definition 3.24
- $\mathcal{C}$,
- $D$
- decision set
- $\delta: \mathcal{X} \rightarrow D$,
- decision function
- $\delta^{\prime}: \mathcal{X} \rightarrow D$,
- decision function
$\delta_{1}$ is said to dominate $\delta$ if
\[\begin{eqnarray} \forall \theta, \ R(\theta, \delta_{1}) & \le & R(\theta, \delta) \nonumber \\ \exists \theta \in \Omega, \text{ s.t. } R(\theta, \delta_{1}) & < & R(\theta, \delta) \nonumber . \end{eqnarray}\]$\delta$ is inadmissible in $\mathcal{C}$ if there exists another desicision rule $\delta_{1}$ such that $\delta_{1}$ dominates $\delta$.
\[\exists \delta_{1} \in \mathcal{C} \text{ s.t. } \delta_{1} \text{ dominates } \delta.\]$\delta$ is adminissible in $\mathcal{C}$ if there is no decision rule which dominates $\delta$.
■
3.2.5 Complete Classes
Definition 3.83 complete class
- $\mathcal{C}$
- set of decision rules
$\mathcal{C}$ is complete if
\[\forall \delta \notin \mathcal{C}, \ \exists \delta_{0} \in \mathcal{C}, \ \text{ s.t. } \ \delta_{0} \text{ dominates } \delta .\]■