1.4 Definetti’s Representation Theorem
Example 1.54
■
Theorem 1.56
- \(\{X_{i}\}_{i \in \mathbb{N}}\),
- exchangeable Bernoulli random variables
- \(X_{i} \in \{0, 1\}\),
- 1 means success
- $\Theta: S \rightarrow [0, 1]$,
- $\mu_{\Theta}:\mathcal{B} \rightarrow [0, 1]$
- distribution of $\Theta$,
- $n^{*} \in \mathbb{N}$
- the number of trials
- given
- $k^{*} \in \mathbb{Z}_{\ge 0}$,
- the number of success
- $k^{*} := \sum_{i=1}^{n}X_{i}$,
- $F^{*}$
- c.d.f. of $\Theta$ conditional on $\sum_{i=1}^{n}X_{i} = k$.
proof
$X_{i}$ is conditionally I.I.D with Ber($\Theta$) distirbuiton given $\Theta = \theta$. Let \(k \in \{0, 1, \ldots, n\}\) be fixed
\[\begin{eqnarray} \mathrm{Pr} \left( \sum_{i=1}^{n} X_{i} = k, \Theta \in B \right) & = & \int_{B} \left( \begin{array}{c} n^{*} \\ k \end{array} \right) \theta^{k} (1 - \theta)^{n^{*} - k} \ \mu_{\Theta}(\theta) \nonumber \end{eqnarray}\]Divide this by
\[\mathrm{Pr} \left( \sum_{i=1}^{n} X_{i} = k \right) = \int_{[0, 1]} \theta^{k} (1 - \theta)^{n^{*} - k} \ \mu_{\Theta}(\theta)\]$\Box$