View on GitHub

memo

DeFinetti's Representation Theorem

1.4 Definetti’s Representation Theorem

Example 1.54

Theorem 1.56

\[\Theta := \lim_{n \rightarrow \infty} \sum_{i=1}^{n} \frac{X_{i}}{n}\] \[F^{*}(t \mid \sum_{i=1}^{n}X_{i} = k) = \frac{ \int_{[0, t]} \theta^{k} (1 - \theta)^{n^{*} - k} \ \mu_{\Theta}(d\theta) }{ \int_{[0, 1]} \psi^{k} (1 - \psi)^{n^{*} - k} \ \mu_{\Theta}(d \psi) }\]

proof

$X_{i}$ is conditionally I.I.D with Ber($\Theta$) distirbuiton given $\Theta = \theta$. Let \(k \in \{0, 1, \ldots, n\}\) be fixed

\[\begin{eqnarray} \mathrm{Pr} \left( \sum_{i=1}^{n} X_{i} = k, \Theta \in B \right) & = & \int_{B} \left( \begin{array}{c} n^{*} \\ k \end{array} \right) \theta^{k} (1 - \theta)^{n^{*} - k} \ \mu_{\Theta}(\theta) \nonumber \end{eqnarray}\]

Divide this by

\[\mathrm{Pr} \left( \sum_{i=1}^{n} X_{i} = k \right) = \int_{[0, 1]} \theta^{k} (1 - \theta)^{n^{*} - k} \ \mu_{\Theta}(\theta)\]
$\Box$