3.4 Distributions with Monotone Likelihood Ratio
Definition (Monotone Likelihood Ration)
We say that $(p_{\theta})_{\theta \in \Theta}$ have monotone likelihood ration if
\[\exists T: \mathcal{X} \rightarrow \mathbb{R}: \text{measurable} \quad \text{ s.t. } \ \forall \theta < \theta^{\prime}, \ \exists g: \mathbb{R} \rightarrow \mathbb{R}_{\ge 0}: \text{non-deceasing},\ \ \frac{ p_{\theta^{\prime}}(x) }{ p_{\theta}(x) } = g(T(x)) \quad (\forall x \in \mathcal{X}) .\]Theorem 3.4.1
- $(p_{\theta})_{\theta \in \Theta}$,
- with MLR in $T$
- (i) Let $\theta_{0} \in \Theta$ be fixed and considered the hypothesis \(\Theta_{0} := \{\theta \mid \theta \le \theta_{0}\}\) and alternatives \(\Theta_{1} := \{\theta \mid \theta_{0} < \theta\}\). $\forall \alpha \in (0, 1)$, there exists UMP test $\phi$ defined by
where $\gamma$ and $C$ are consntats which satisfies
\[\beta_{\phi}(\theta_{0}) = \alpha .\]-
(ii) $\beta_{\phi}(\theta)$ is non-deacreasing in $\theta \in \Theta$. Moreover, $\beta_{\phi}(\theta)$ is stricty increasing in $\theta \in \beta_{\phi}^{-1}((0, 1))$.
-
(iii) For $\forall \theta^{\prime} \in \Theta$, $\phi$ gives the UMP test for the hypothesis \(\Theta_{0} := \{\theta \mid \theta \le \theta^{\prime}\}\) and alternatives \(\Theta_{1} := \{\theta \mid \theta^{\prime} < \theta\}\) at level $\alpha^{\prime} := \beta_{\phi}(\theta^{\prime})$.
-
(iv)
proof
(i), (ii)
It suffices to show that $\exists C, \gamma$ such that
\[\begin{eqnarray} & & \mathrm{E}_{\theta_{0}} \left[ \phi(X) \right] = \alpha \nonumber \\ & \Leftrightarrow & P_{\theta_{0}}(T(X) > C) + \gamma P_{\theta_{0}}(T(X) = C) = \alpha \nonumber \end{eqnarray}\]Let us defined $\phi$
\[\phi(C) := P_{\theta_{0}}(T(X) = C) \quad (C \in \mathbb{R}) .\]Thus, $\phi$ is right continuous with left limits and
\[\phi(-\infty) = 0, \ \phi(\infty) = 1, .\]Since
\[\begin{eqnarray} P_{\theta_{0}}(T(X) > C) & = & 1 - \phi(C) \nonumber \\ P_{\theta_{0}}(T(X) = C) & = & \Delta \phi(C) \nonumber \end{eqnarray}\]where \(\Delta \phi(C) := \phi(C) - \phi(C-)\).
\[\begin{eqnarray} & & 1 - \phi(C) + \gamma \Delta \phi(C) = \alpha \nonumber \\ & \Leftrightarrow & \phi(C) = 1 - \alpha + \gamma \Delta \phi(C) \nonumber \end{eqnarray}\]Hence let
\[C^{*} := \inf \{ C \mid \phi(C) \ge 1 - \alpha \} \in \mathbb{R} .\]Then by right continutity, we have
\[\phi(C^{*}) \ge 1 - \alpha .\]In case of $\phi(C^{*}) = 1- \alpha$,
\[\gamma^{*} := 0 .\]In case of \(\phi(C^{*}) > 1 - \alpha\), $C^{*}$ is a Indeed,
Take any \(C < C^{*}\). Then by definition of $C^{*}$ we have
\[\phi(C) < 1 - \alpha.\] \[\begin{eqnarray} \phi(C^{*}-) & = & \lim_{C \nearrow C^{*}} \phi(C) \nonumber \\ & \ge & 1 - \alpha \nonumber \\ & < & \phi(C) . \nonumber \end{eqnarray}\]Therefore
\[\phi(C^{*}-) \le 1 - \alpha < \phi(C^{*}) .\]Let us defined $\gamma^{*}$ by
\[\gamma^{*} := \frac{ \phi(C^{*}) - (1 - \alpha) }{ \Delta \phi(C^{*}) } \in [0, 1] .\]proof of (ii)
Let $\theta^{\prime} < \theta^{\prime\prime}$. Then consider $\phi^{\prime}$ such that
\[\phi^{\prime} \equiv \alpha^{\prime} = \beta_{\phi}(\theta^{\prime}) \in (0, 1) .\]Then it follow that
\[\begin{eqnarray} & & \beta_{\phi^{\prime}}(\theta^{\prime\prime}) \ge \beta_{\phi}(\theta^{\prime\prime}) \nonumber \\ & \Leftrightarrow & \beta_{\phi^{\prime}}(\theta^{\prime}) \ge \beta_{\phi}(\theta^{\prime\prime}) \nonumber \end{eqnarray}\]Assume $\beta_{\phi}(\theta^{\prime\prime}) = \beta_{\phi}(\theta^{\prime\prime})$.
Lemma
- $\theta^{\prime} < \theta^{\prime\prime}$,
- $\alpha^{\prime} := \beta_{\phi}(\theta^{\prime})$,
$\phi$ is MP test at levelt $\alpha^{\prime}$ for hypothesis \(\Theta_{0} := \{P_{\theta^{\prime}}\}\) and alternatives \(\Theta_{1} := \{P_{\theta^{\prime\prime}}\}\).
proof
By MLR, there exists non decreasing function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that
\[g(T(x)) = p_{\theta^{\prime\prime}}(x) \frac{ p_{\theta^{\prime\prime}}(x) }{ p_{\theta^{\prime}}(x) } .\]Using $g$, $\phi$ satisfy
\[\phi(x) = \begin{cases} 1 & (p_{\theta^{\prime\prime}}(x) > k p_{\theta^{\prime}}(x)) \\ 0 & (p_{\theta^{\prime\prime}}(x) > k p_{\theta^{\prime}}(x)) \end{cases}\]where $k := g(C)$.
\[\begin{eqnarray} & & \Gamma(x) > c \nonumber \\ & \Leftrightarrow & g(T(x)) > g(C) \nonumber \\ & \Leftrightarrow & p_{\theta^{\prime\prime}}(x) > g(C)p_{\theta^{\prime}}(x) \nonumber \end{eqnarray}\]Corollary 3.4.1
- $\theta_{0} \in \mathbb{R}$,
- \(\Theta_{0} := \{\theta \mid \theta \le \theta_{0}\}\),
- \(\Theta_{1} := \{\theta \mid \theta > \theta_{0}\}\),
- $X$
- $Q:\Theta \rightarrow \mathbb{R}$ is strictly monotone,
Then there exists a UMP test $\phi:\mathcal{X} \rightarrow [0, 1]$ for hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$. Moreover, if $Q$ is increasing
\[\phi = \begin{cases} 1 & T(x) > C, \\ \gamma & T(x) = C, \\ 0 & T(x) < C, \end{cases}\]where $C$ and $\gamma$ are determined by \(\mathrm{E}_{\theta_{0}}[\phi(X)] = \alpah\). If $Q$ is decreasing,
\[\phi = \begin{cases} 1 & T(x) < C, \\ \gamma & T(x) = C, \\ 0 & T(x) > C, \end{cases} .\]proof
Example 3.4.2 Binomial
Definition Essentially complete
- $C \subseteq \Phi$,
$C$ is said to be essentially complete if
\[\forall \phi \in \Phi \setminus C, \ \exists \phi^{\prime} \in C, \ \forall \theta \in \Theta, \ R(\theta, \phi) \ge R(\theta, \phi^{\prime}) .\]- $L_{0}: \Theta \rightarrow \mathbb{R}$,
- strictly increasing in $\theta \ge \theta_{0}$
- $L_{1}: \Theta \rightarrow \mathbb{R}$,
- decreasing increasing for $\theta \le \theta_{0}$
Theorem 3.4.2
- $\Theta \subseteq \mathbb{R}$,
- $\theta_{0} \in \Theta$,
- $L: \Theta \times \mathcal{X} \rightarrow \mathbb{R}$,
- (i) $\mathcal{C}$ is essentially complete.
- (ii) $\mathcal{C}$ is minimal essentially complete if
proof
(i)
\[\begin{eqnarray} R(\theta, \phi) & = & \int_{\mathcal{X}} p_{\theta}(x) \left( \phi(x) L_{1}(\theta) + (1 - \phi(x)) L_{0}(\theta) \right) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} p_{\theta}(x) \left( L_{0}(\theta) + (L_{1}(\theta) - L_{0}(\theta)) \phi(x) \right) \ \mu(dx) \nonumber \end{eqnarray}\]Hence
\[\begin{eqnarray} R(\theta, \phi^{\prime}) - R(\theta, \phi) & = & (L_{1}(\theta) - L_{0}(\theta)) \int_{\mathcal{X}} (\phi^{\prime}(x) - \phi(x)) p_{\theta}(x) \ \mu(dx) \nonumber \end{eqnarray}\]If
\[\begin{eqnarray} \beta_{\phi^{\prime}}(\theta) - \beta_{\phi}(\theta) & = & \int_{\mathcal{X}} (\phi^{\prime}(x) - \phi(x)) p_{\theta}(x) \ \mu(dx) & & \begin{cases} > 0 & (\theta > \theta_{0}) \\ < 0 & (\theta < \theta_{0}) \\ = 0 & (\theta = \theta_{0}) \end{cases}, \nonumber \end{eqnarray}\]then
\[\forall \theta \in \Theta, \ R(\theta, \phi^{\prime}) - R(\theta, \phi) \le 0 .\]Definiiton Stochastically increasing
- \(\{F_{\theta}\}_{\theta \in \Theta}\),
- distributions
\(\{F_{\theta}\}_{\theta \in \Theta}\) is said to be stochastically increasing if
\[\begin{eqnarray} & & F_{\theta} \not\equiv F_{\theta^{\prime}}, \nonumber \\ & & \forall \theta < \theta^{\prime}, \ \forall x \in \mathbb{R}, \ F_{\theta^{\prime}}(x) \le F_{\theta}(x), \nonumber \end{eqnarray}\]Remark
- \(\{F_{\theta}\}\),
- stochastically increasing
- \(\{P_{\theta}\}\),
- porobability measure corresponding to \(\{F_{\theta}\}\),
Then
\[\forall x \in \mathbb{R}, \ P_{\theta}(X > x) \le P_{\theta^{\prime}}(X > x) .\]Hence increasing means r.v. is increasing.
Lemma 3.4.1
- $(\mathcal{X}, \mathcal{A}, P)$,
- probability space,
- $F_{0}, F_{1}$
- c.d.f.
Then the following statements are equivalent:
- (i)
- (ii)
proof
(i) $\Rightarrow$ (ii)
\[\begin{eqnarray} F_{1}(x) & = & P(f_{1}(V) \le x) \nonumber \\ & \le & P(f_{0}(V) \le x) \nonumber \\ & = & F_{0}(x) . \nonumber \end{eqnarray}\](i) $\Leftarrow$ (ii)
Let
\[f_{i}(y) := \inf \{ x \mid F_{i}(x - 0) \le y \le F_{i}(x) \} \ (i = 0, 1) .\]Then
\[\begin{eqnarray} & & \forall x, \ f_{i}(F_{i}(x)) \le x \nonumber \\ & & \forall x, \ F_{i}(f_{i}(x)) \ge x . \end{eqnarray}\]It follows that
\[\begin{eqnarray} \end{eqnarray}\]Definition location parameter family
- \(\{F_{\theta}\}\),
\(\{F\}\) is said to be localtion parameter family if
\[\begin{eqnarray} F_{\theta}(x) = F(x - \theta) . \nonumber \end{eqnarray}\]Example
Localtion parameter family \(\{F_{\theta}\}\) is stochastically increasing. Indeed,