2.7 Exponential Families
Definition. Exponential families
- \(\mathcal{P} := \{P_{\theta}\}_{\theta \in \Theta}\),
- probability measure over sample sp. \((\mathcal{X}, \mathcal{A})\)
\(\mathcal{P}\) is said to be exponential families if there exist
- $\mu: \mathcal{X} \rightarrow \mathrm{Range}(\mu) \subseteq \mathbb{R}$,
- $\sigma$-finite measure $\mu$ over \((\mathcal{Y}, \mathcal{B})\),
- $ \forall \theta \in \Theta$, \(P_{\theta} \ll \mu\),
- $k \in \mathbb{N}$,
- \(T_{i}: \mathcal{X} \rightarrow \mathcal{Y} \ (i = 1, \ldots, k)\),
- measurable function
- \(Q_{i}: \Theta \rightarrow \mathcal{Y} \ (i = 1, \ldots, k)\),
- real valued function
- $C: \Theta \rightarrow \mathbb{R}$,
- measurable function
- $h: \mathcal{X} \rightarrow \mathcal{Y}$,
- measurable function
such that
\[\begin{eqnarray} \frac{ d P_{\theta} }{ d \mu }(x) & = & C(\theta) \exp \left( \sum_{j=1}^{k} Q_{j}(\theta) T_{j}(x) \right) h(x) \label{chap02_02_32_definition_of_exponential_family} \\ & = & \exp \left( \sum_{j=1}^{k} Q_{j}(\theta) T_{j}(x) - C^{\prime}(\theta) \right) h(x) \end{eqnarray}\]where \(C^{\prime}(\theta) := -\log C(\theta)\).
Example. Exponential families
If a family of distribution is
- binominal distribution
- Poisson distribution
- or Normal distribution,
it is exponential families. For instance, binominal distribution \(B(p)^{n}\) could be denoted as
\[\left( \begin{array}{c} n \\ x \end{array} \right) p^{x} (1 - p)^{n-x} = (1 - p)^{n} \exp \left( x \log \left( \frac{ p }{ 1 - p } \right) \right) \left( \begin{array}{c} n \\ x \end{array} \right)\]Hence binominal distribution is exponential family.
Example 2.7.1
- \(Y_{1}, \ldots, Y_{n}\),
- i.i.d.
When $\sigma = 1$, the distribution is same as \(\chi^{2}\) distribution.
Example 2.7.2
- \(X_{11}, \ldots, X_{ns} \in \{0, 1\}\),
- $n$ independent trialas
- $s$ choices
- \(P(X_{ij} = 1) = p_{j}\),
- \(x_{ij} \in \{0, 1\}\),
- \(\sum_{j=1}^{s} x_{ij} = 1\),
- \(E_{1}, \ldots, E_{s}\),
- \(E_{j}\) outcome is obtained if \(X_{ij} = 1\),
- \(T_{j}(x) := \sum_{i=1}^{n} x_{ij} \ (j=1, \ldots, s - 1) \in \{0, 1, \ldots, n\}\),
- the number of times of $j$-th choice is selected
Joint distribution of \(X := (X_{11}, \ldots, X_{ns})\) is
\[\begin{eqnarray} x := (x_{11}, \ldots, x_{ns}), \quad P(X_{11} = x_{11}, \ldots, X_{ns} = x_{ns}) & = & p_{1}^{ \sum_{i=1}^{n} x_{i1} } p_{2}^{ \sum_{i=1}^{n} x_{i2} } \cdots p_{s}^{ \sum_{i=1}^{n} x_{is} } \nonumber \\ & = & \exp \left( \sum_{j=1}^{s} \log \left( p_{j}^{ T_{j}(x) } \right) \right) \nonumber \\ & = & \exp \left( \sum_{j=1}^{s} T_{j}(x) \log \left( p_{j} \right) \right) . \end{eqnarray}\]Joint distribution of \(T_{j}\) is multinomial distribution \(M(n; p_{1}, \ldots, p_{s})\) given by
\[\begin{eqnarray} P(T_{1} = t_{1}, \ldots, T_{s-1} = t_{s-1}) & = & \frac{ n! }{ t_{1}! \cdots t_{s-1}!(n - t_{1} - \cdots - t_{s-1}) } p_{1}^{t_{1}} \cdots p_{s-1}^{t_{s-1}}(1 - p_{1} - \cdots - p_{s-1})^{n-t_{1}- \cdots - t_{s-1}} \end{eqnarray}\]If \(X_{1}, \ldots, X_{n}\) is a sample from a distribution with density \(\eqref{chap02_02_32_definition_of_exponential_family}\),
Definition. Natural Parameter Space
- \(\mathcal{P} := \{P_{\theta}\}_{\theta \in \Theta}\),
- exponential family.
- \(T_{i}\),
- exponential family
- \(A \subseteq \mathbb{R}^{m}\),
where \(\{T_{i}\}\) and $h$ are measrauble functions in \(\eqref{chap02_02_32_definition_of_exponential_family}\). $A$ is said to be natural parameter space.
Let \(\mathcal{P}^{\prime} := \{P_{\theta}^{\prime}\}_{\theta \in \Theta}\) be exponential family whic satisfies
\[\begin{eqnarray} \frac{ d P_{\theta}^{\prime} }{ d \mu }(x) & = & \exp \left( \sum_{j=1}^{k} Q_{j}(\theta) T_{j}(x) \right) h(x) \nonumber . \end{eqnarray}\]Let $A \neq \emptyset$ be natural parameter space of \(\mathcal{P}^{\prime}\).
\[\Psi (a) := \log \left( \int_{\mathcal{X}} \exp \left( \sum_{i=1}^{m} a_{i}T_{i}(x) \right) h(x) \ \mu(dx) \right) \quad (a \in A)\]Now we can define more natural exponential family \(\mathcal{P}:=\{P_{a}\}_{a \in A}\) by
\[\frac{ d P_{a} }{ d\mu } (x) = \exp \left( \sum_{i=1}^{m} a_{i}T_{i}(x) - \Psi(a) \right) h(x) .\]If $\mathcal{Y} \subseteq \mathbb{R}_{\ge 0}^{m}$, exponential family \(\mathcal{P}^{\prime}\) can be embed in \(\mathcal{P}\). Indeed, by definiiton of exponential family, radon nikodim derivative exists for all $\theta \in \Theta$, that is,
\[\forall \theta \in \Theta, \ i = 1, \ldots, m, \ T_{i}(\theta) \in A .\]Hence \(\mathcal{P}^{\prime} \subseteq \mathcal{P}\).
Lemma 2.7.1
natural parameter space of exponential familiy is convex.
proof.
Let \(\theta := (\theta_{1}, \ldots, \theta_{k}) \in A\) and \(\theta^{\prime} := (\theta_{1}^{\prime}, \ldots, \theta_{k}^{\prime}) \in A\). For all $\alpha \in (0, 1)$$,
\[\begin{eqnarray} \int_{\mathcal{X}} \exp \left( \sum_{i=1} \left( \alpha\theta_{i} + (1 - \alpha)\theta_{i}^{\prime} \right) T_{i}(x) \right) \ \mu(dx) & = & \int_{\mathcal{X}} \exp \left( \sum_{i=1} \left( \alpha\theta_{i} \right) T_{i}(x) \right) \exp \left( \sum_{i=1} \left( (1 - \alpha)\theta_{i}^{\prime} \right) T_{i}(x) \right) \ \mu(dx) \nonumber \\ & \le & \left( \int_{\mathcal{X}} \exp \left( \alpha \sum_{i=1} \theta_{i} T_{i}(x) \right)^{\frac{1}{\alpha}} \ \mu(dx) \right)^{\alpha} \left( \int_{\mathcal{X}} \exp \left( (1 - \alpha) \sum_{i=1} \theta_{i}^{\prime} T_{i}(x) \right)^{\frac{1}{1- \alpha}} \ \mu(dx) \right)^{1 - \alpha} \nonumber \\ & = & \left( \int_{\mathcal{X}} \exp \left( \sum_{i=1} \theta_{i} T_{i}(x) \right) \ \mu(dx) \right)^{\alpha} \left( \int_{\mathcal{X}} \exp \left( \sum_{i=1} \theta_{i}^{\prime} T_{i}(x) \right) \ \mu(dx) \right)^{1 - \alpha} < \infty \nonumber \end{eqnarray}\]Lemma 2.7.2
- $X: \Omega \rightarrow \mathcal{X}$,
- $T: \mathcal{X} \rightarrow \mathcal{Y}$,
- statistics
- \(\mathcal{P} := \{P_{\theta, \kappa}\}\),
- distribution of $X$
- exponential family
Then there exist
- \(\lambda_{\theta}\),
- measura over $s$ dimensional euclidean space
- \(\nu_{t}\),
- measura over $r$ dimensional euclidean space
such that
- (i) distribution of \(T := (T_{1}, \ldots, T_{s})\) is an exponential family of the form
- (ii) distribution of \(T := (T_{1}, \ldots, T_{s})\) is an exponential family of the form
proof.
Theorem 2.7.1
- \((\mathcal{X}, \mathcal{A})\),
- measurable space
- \(\Theta \subseteq \mathbb{R}^{k}\),
- \(\theta_{j} \in \mathbb{C}^{k}\),
- \(\mathrm{Real}(\theta_{j}) \in \Theta\),
- $\phi: \mathcal{X} \rightarrow \mathbb{R}$,
Then
- (i) Analytic funciton
- (ii)