2.1
Definition complete measure
- $(S, \mathcal{A}, \mu)$,
- probability space
$\mu$ is said to be complete if
\[N \in \mathcal{A}, \ \mi(N) = 0, \ \Rightarrow \ \forall S \subseteq N, \ S \in \mathcal{A}\]■
$\mu$ is said to be complete if
\[N \in \mathcal{A}, \ \mi(N) = 0, \ \Rightarrow \ \forall S \subseteq N, \ S \in \mathcal{A}\]