3.4 Newton’s Method With Hessian Modification
Definition inertia
- $A \in \mathbb{R}^{n \times n}$,
- symmetric matrix
- $\lambda_{i}(A)$,
- $i$-th leargest eigenvalues
Let
\[\begin{eqnarray} n_{+}(A) & := & \mathrm{card}( \{ i = 1, \ldots, n \mid \lambda_{i}(A) > 0 \} ) \nonumber \\ n_{-}(A) & := & \mathrm{card}( \{ i = 1, \ldots, n \mid \lambda_{i}(A) < 0 \} ) \nonumber \\ n_{0}(A) & := & \mathrm{card}( \{ i = 1, \ldots, n \mid \lambda_{i}(A) = 0 \} ) \nonumber \end{eqnarray}\]Inertia of a matrix $A$ is a triplet \(\mathrm{inertia}(A) := (n_{+}, n_{-}, n_{0})\).
■