8.2
8.2.5 Weak convergence
Definition 8.33
- \(\{P_{n}\}\),
- Borel probablity measures on $\mathbb{R}^{n}$,
- $P$,
- Borel probablity measures on $\mathbb{R}^{n}$,
- \(\{F_{n}\}\),
- CDF of \(\{P_{n}\}\),
- $F$,
- Borel probablity measures on $\mathbb{R}^{n}$,
\(\{P_{n}\}\) is said to converge wealy to $P$ if
\[F_{n}(x) \rightarrow F(x)\]where $x$ is all continuous points of $F$.
■
Theorem 8.34
- $X_{n}$,
- $X$,
If $X_{n} \overset{p}{\rightarrow} X$, \(X_{n} \overset{w}{\rightarrow} X\).
proof
$\Box$