View on GitHub

memo

Chapter3-05. statistical hypothesis

3.5 Statistical hypothesis

3.5.3. Formulation of hypothesis testing

Definition testing function

A pair of subsets $(\Theta_{0}, \Theta_{1}) \subseteq \Theta^{2}$ is said to be hypothesis and alternatives if $\Theta_{0} \cap \Theta_{1} = \emptyset$ and $\Theta_{0} \cup \Theta_{1} = \Theta$.

A measurable function $\phi: \mathcal{X} \rightarrow [0, 1]$ is said to be test, test function or critical function. In particular, test $\phi$ is said to be non-randomized if test $\phi$ is an indicator function. Otherwise, $\phi$ is randomized test.

For test $\phi$,

\[\sup_{\theta \in \Theta_{0}} \mathrm{E}_{\theta} \left[ \phi \right]\]

is said to be size of test $\phi$ for hypothesis $\Theta_{0}$.

A test $\phi$ is said to be level $\alpha$ test or test at level $\alpha$ for hypothesis $\Theta_{0}$ if

\[\forall \theta \in \Theta_{0}, \ \mathrm{E}_{\theta} \left[ \phi \right] \le \alpha .\]

We denote $\Phi_{\alpha}$ by set of level $\alpha$ tests.

For test $\phi$,

\[\beta_{\phi}(\theta) := \mathrm{E}_{\theta} \left[ \phi \right]\]

is said to be power function or power.

For test $\bar{\phi} \in \Phi_{\alpha}$, $\bar{\phi}$ is said to be the uniformly most powerful test at level $\alpha$ if

\[\theta \in \Theta_{1}, \ \beta_{\phi}(\theta) \le \beta_{\bar{\phi}}(\theta)\]

Remark

Theorem 3.26 Neyman-Peason’s fundamental lemma

(1)

\[\begin{eqnarray} \exists \phi: \text{ test}, \ \exists k, \gamma \in \mathbb{R} \ \text{ s.t. } \ \ \mathrm{E}_{0} \left[ \phi \right] & = & \alpha \label{chap03_03_07} \\ \phi(x) & = & \begin{cases} 1 & (p_{1}(x) > kp_{0}(x)) \\ \gamma & (p_{1}(x) = kp_{0}(x)) \\ 0 & p_{1}(x) < kp_{0}(x) \end{cases} \nonumber \\ & = & 1_{\{p_{1} > kp_{0}\}}(x) + \gamma 1_{\{p_{1} = kp_{0}\}}(x) \quad \mu \text{-a.e. } x \label{chap03_03_08} \end{eqnarray}\]

(2) If test $\phi$ satisifes \(\eqref{chap03_03_07}\) and \(\eqref{chap03_03_08}\), then $\phi$ is most powerful test at level $\alpha$.

(3) If $\alpha \in (0, 1)$ and test $\phi$ is the most powerful test at level $\alpha$, then there exists $k, \gamma \in \mathbb{R}$ such that \(\eqref{chap03_03_08}\) satisfies.

proof.

proof of (1)

For $\alpha = 0$,

\[\begin{eqnarray} F(z) & := & P_{0} \left( \left\{ x \in \mathcal{X} \mid p_{1}(x) \le z p_{0}(x) \right\} \right) \nonumber \\ & = & \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) \ \mu(dx) \label{theorem_fundamental_neyman_peason_lemma_02_def_of_cdf} \end{eqnarray}\]

$F$ is cumulative distribution function, that is, $F$ satisfies following propeties:

Indeed, for (a), by monoton convergence theorem, we have

\[\begin{eqnarray} \int_{\mathcal{X}} 1_{\{x \mid \frac{p_{1}(x)}{p_{0}(x)} \le z\}}(x) p_{0}(x) \ \mu(dx) & \nearrow & \int_{\mathcal{X}} p_{0}(x) \ \mu(dx) \quad (z \rightarrow \infty) \nonumber \\ & = & 1 . \nonumber \end{eqnarray}\]

(b) is obivous since

\[P(p_{i}(x) < 0) = 0 .\]

For (c), let $z \in \mathbb{R}$ be fixed. For all sequence \(\{z_{n}\}_{n \in \mathbb{N}}\), \(z_{n} \searrow z\), we have

\[\begin{eqnarray} \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z_{n}\}}(x) p_{0}(x) \ \mu(dx) - \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) \ \mu(dx) & = & \int_{\mathcal{X}} ( 1_{\{\frac{p_{1}}{p_{0}} \le z_{n}\}}(x) - 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) ) p_{0}(x) \ \mu(dx) . \nonumber \end{eqnarray}\]

By taking the limit of equation above as $n \rightarrow \infty$, it converges to 0 by Lebesgue dominated convergence theorem. Hence (c) holds. Finally we show (d). But this is obvious since integrand satisifies that

\[\forall z < z^{\prime}, \ \Rightarrow \ \forall x \in \mathcal{X}, \ 0 \le 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) < 1_{\{\frac{p_{1}}{p_{0}} \le z^{\prime}\}}(x) p_{0}(x) .\]

Therefore, $F$ is cumulative distribution. Since $F$ is non decreasing and right continuous,

\[\begin{equation} 0 < \forall \alpha < 1, \ \exists k \in \mathbb{R}, \ \text{ s.t. } \ F(k-) \le 1 - \alpha \le F(k) . \label{theorem_fundamental_neyman_peason_lemma_01} \end{equation}\]

Indeed, let $\alpha \in (0, 1)$ be fixed. We denote

\[\begin{eqnarray} A & := & \{ x \in \mathbb{R} \mid 1 - \alpha \le F(x) \} \nonumber \\ k & := & \inf A \nonumber \\ B & := & \{ x \in \mathbb{R} \mid F(x) \le 1 - \alpha \} . \nonumber \\ c & := & \sup B . \nonumber \end{eqnarray}\]

By right-continuity,

\[\forall \{k_{n}\}, \ k_{n} \searrow k, \ \lim_{n \rightarrow \infty} F(k_{n}) = F(k) \ge 1 - \alpha .\]

Then $F$ is non decreasing so that

\[\forall \{k_{n}\}_{n \in \mathbb{N}}, \ k_{n} \nearrow k, \ \Rightarrow \ k_{n} \le c .\]

We can easily check this. Suppose there exists $n$ such that \(c < k_{n}\). $F$ is non decreasing so that \(F(c) < F(k_{n})\). If \(1 - \alpha \le F(k_{n})\), \(k_{n} \in A\) but this contradict to \(k_{n} \le k\). In other hand, if we assume \(F(k_{n}) < 1 - \alpha\), \(k_{n} \in B\) so that \(k_{n} \le c\). Therefore the above statement hold. By combining our observations, we have

\[\lim_{n \rightarrow \infty} F(k_{n}) \le F(c) \le 1 - \alpha \le F(k) .\]

The equation \(\eqref{theorem_fundamental_neyman_peason_lemma_01}\) holds. Now we define constant $\gamma$

\[\gamma := \begin{cases} 0 & F(k) = F(k-) = 1 - \alpha \\ \frac{F(k) - (1 - \alpha)}{F(k) - F(k-)} & \text{otherwise} \end{cases} ,\]

and test $\phi$

\[\phi(x) := 1_{\{p_{1} > k p_{0}\}}(x) + \gamma 1_{\{p_{1} = k p_{0}\}}(x) .\]

Then we have

\[\begin{eqnarray} \mathrm{E}_{0} \left[ \phi \right] & = & P_{0}(p_{1} > k p_{0}) + \gamma P_{0}(p_{1} = k p_{0}) \nonumber \\ & = & 1 - F(k) + \gamma (F(k) - F(k-)) \nonumber \\ & = & \begin{cases} 1 - (1- \alpha) & F(k) = F(k-) = 1 - \alpha \\ 1 - F(k) - ( F(k) - (1 - \alpha) ) & \text{otherwise} \end{cases} \nonumber \\ & = & \alpha \end{eqnarray}\]

proof of (2)

Let $\phi$ be test. There exist $k, \gamma \in \mathbb{R}$ such that $\phi$ satisfies that \(\eqref{chap03_03_07}\) and \(\eqref{chap03_03_08}\). For all test $\phi^{\prime}: \mathcal{X} \rightarrow [0, 1]$ at level $\alpha$, from \(\eqref{chap03_03_08}\),

\[(\phi - \phi^{\prime}) (p_{1} - k p_{0}) \ge 0 \quad \mu \text{-a.e.}\]

Hence the integral of the equation satisfies

\[\int_{\mathcal{X}} (\phi - \phi^{\prime}) (p_{1} - k p_{0}) \ \mu(x) \ge 0\]

Form the equation above,

\[\begin{eqnarray} \int_{\mathcal{X}} (\phi - \phi^{\prime}) p_{1} \ \mu(x) & \ge & k \int_{\mathcal{X}} (\phi - \phi^{\prime}) p_{0} \ \mu(x) \nonumber \\ & = & k \mathrm{E}_{0} \left[ \phi \right] - k \mathrm{E}_{0} \left[ \phi^{\prime} \right] \nonumber \\ & = & k \left( \alpha - \mathrm{E}_{0} \left[ \phi^{\prime} \right] \right) \ge 0 \quad (\because \phi^{\prime} \text{ is test at level } \alpha) \nonumber \end{eqnarray}\]

Therefore

\[\mathrm{E}_{1} \left[ \phi \right] \ge \mathrm{E}_{1} \left[ \phi^{\prime} \right] .\]

proof of (3)

Let $\phi^{\prime}$ be most powerful test at level $\alpha$. As we have already shown in (1), there exist the most powerful test $\phi$ at level $\alpha$. By definition of $\phi$ and (2),

\[\int_{\mathcal{X}} (\phi - \phi^{\prime}) (p_{1} - k p_{2}) \ \mu(x) \ge 0 .\]

In other hand, $\phi^{\prime}$ is most powerful test at level $\alpha$ so that we have

\[\mathrm{E}_{1} \left[ \phi^{\prime} \right] \ge \mathrm{E}_{1} \left[ \phi \right] .\]
$\Box$

Example 3.25

\[\begin{eqnarray} p_{\theta}(x) & := & \frac{d P_{\theta}}{d \mu}(x) \nonumber \\ & = & \left( \begin{array}{c} n \\ x \end{array} \right) \theta^{x} (1 - \theta)^{n - x} \nonumber \end{eqnarray}\]

We consinder hypothesis test:

\[\Theta_{H} := \{\theta_{0}\}, \ \Theta_{K} := \{\theta_{0}\} .\]

We have

\[\log \frac{ p_{\theta_{0}}(x) }{ p_{\theta_{1}}(x) } = ax + n \log \frac{ 1 - \theta_{1} }{ 1 - \theta_{0} }\]

where

\[a := \log \frac{ \theta_{1}/(1 - \theta_{1}) }{ \theta_{0}/(1 - \theta_{0}) } > 0 .\]

Now let

\[\phi(x) := \begin{cases} 1 & x > x_{0} \\ \gamma & x = x_{0} \\ 0 & x < x_{0} \end{cases}\]

where $\gamma$ and $x_{0}$ are taken to satisfy $\beta_{\phi}(\theta_{0}) = \alpha$. $\phi$ is the unimofrmly most powerful test for hypothesis $\Theta_{H$}$ and alternatives $\Theta_{K}$.

3.5.5 Monotone likehood ratio and composite hypothesis test

Assumptions

\[\forall \theta, \ \mu \gg P_{\theta} .\]

Definition monotone likelihodd ratio

\[\mathcal{X}_{\theta_{1}, \theta_{2}} := \mathcal{X} \setminus \{x \mid p_{\theta_{1}}(x) = p_{\theta_{2}}(x) = 0\} \quad (\theta_{1}, \theta_{2} \in \Theta)\]

$\mathcal{P}$ is said to be monotone likelihood ration with respect to $T$ if

\[\begin{eqnarray} \forall \theta_{1}, \theta_{2} \in \Theta, \ \theta_{1} < \theta_{2}, \ \exists H_{\theta_{1}, \theta_{2}}:T(\mathcal{X}) \rightarrow [0, \infty] \text{ s.t. } & & H \text{ is non-decreasing}, \nonumber \\ & & \forall x \in \mathcal{X}_{\theta_{1}, \theta_{2}} , \ \frac{p_{\theta_{2}}}{p_{\theta_{1}}}(x) = H_{\theta_{1}, \theta_{2}}(T(x)) \nonumber \end{eqnarray}\]

We assume $c/0 = \infty$ for $c > 0$.

Example 3.26

That is, there exist $g: \mathcal{X} \rightarrow \mathbb{R}_{\ge 0}$, $a: \Theta \rightarrow \mathbb{R}$, $\psi: \Theta \rightarrow \mathbb{R}$ such that

\[p_{\theta}(x) := g(x) \exp \left( a(\theta) T(x) - \psi(\theta) \right) \ (x \in \mathcal{X}) .\]

If $a$ is non-decreasing function, then $\mathcal{P}$ is monotone likelihood ration with respect to $T$.

Theorem 3.27

(a) Let

\[\begin{eqnarray} \phi_{0}(x) & := & \begin{cases} 1 & (T(x) > c) \\ \gamma & (T(x) = c) \\ 0 & (T(x) < c) \end{cases} \nonumber \\ & = & 1_{\{x \mid T(x) >c\}}(x) + \gamma 1_{\{x \mid T(x) =c\}}(x) \label{chap03_03_22_test} \end{eqnarray}\]

If \(\mathrm{E}_{\theta_{0}} \left[ \phi_{0} \right] > 0\), then $\phi_{0}$ is the most powerful test at level \(\alpha^{\prime} := \mathrm{E}_{\theta_{0}}[\phi_{0}]\) for hypothesis test

\[\begin{equation} \Theta_{H} := \{\theta \mid \theta \le \theta_{0}\}, \ \Theta_{K} := \{\theta \mid \theta > \theta_{0}\}, \label{chap03_03_23_hypothesis_test} \end{equation}\]

(b) For $\alpha \in (0, 1)$,

\[\exists c \in \mathbb{R}, \ \gamma \in [0, 1], \ \text{ s.t. } \ \phi_{0}: \ \eqref{chap03_03_22_test} \text{ is the most powerful test at level } \alpha\]

proof

(a)

Let \(\Phi(\Theta_{H}, \Theta_{K}, \alpha^{\prime})\) be a set of tests for \(\Theta_{H}\) and \(\Theta_{K}\) at level $\alpha^{\prime}$. We need to show

\[\begin{equation} \forall \phi \in \Phi(\Theta_{H}, \Theta_{K}, \alpha^{\prime}), \ \theta_{1} \in \Theta_{K}, \ \mathrm{E}_{\theta_{1}}[\phi_{0}] \ge \mathrm{E}_{\theta_{1}}[\phi] \label{chap03_monotone_likehood_ratio_ump_test} \end{equation}\]

and

\[\begin{equation} \sup_{\theta \in \Theta_{H}} \mathrm{E}_{\theta} \left[ \phi_{0} \right] \le \alpha^{\prime} \label{chap03_monotone_likehood_ratio_level_alpha_test} \end{equation} .\]

We first show \(\eqref{chap03_monotone_likehood_ratio_ump_test}\). Let $\theta_{1} \in \Theta_{K}$ be fixed and

\[k := \inf \left\{ \frac{p_{\theta_{1}}(x)}{p_{\theta_{0}}(x)} \mid x \in \mathcal{X}_{\theta_{1}, \theta_{2}}, \ T(x) \ge c \right\} .\]

Then $k \in \mathbb{R}_{\ge 0}$. Indeed,

\[\begin{eqnarray} \mu( \{ x \in \mathcal{X}_{\theta_{0}, \theta_{1}} \mid p_{\theta_{0}}(x) \neq 0, \ T(x) \ge c \} ) & = & \mu( \{ x \in \mathcal{X}_{\theta_{0}, \theta_{1}} \mid T(x) \ge c \} ) \nonumber \\ & > & 0 \end{eqnarray}\]

since

\[\int_{\mathcal{X}_{\theta_{0}, \theta_{1}}} 1_{\{T \ge c\}}(x) p_{\theta_{0}}(x) \ \mu(dx) = P_{\theta_{0}}(T \ge c) \ge \mathrm{E}_{\theta_{0}}[\phi_{0}] > 0 .\]

Morever \(p_{\theta_{1}} < \infty \ \mu \text{-a.e.}\) by definition. Therefore $k < \infty$.

Now we show that

\[\begin{eqnarray} x \in \mathcal{X}_{\theta_{0}, \theta_{1}}, \ p_{\theta_{1}}(x) > kp_{\theta_{0}}(x), & \Rightarrow & \phi_{0}(x) = 1 \nonumber \\ x \in \mathcal{X}_{\theta_{0}, \theta_{1}}, \ p_{\theta_{1}}(x) < kp_{\theta_{0}}(x), & \Rightarrow & \phi_{0}(x) = 0 \label{chap03_03_24} . \end{eqnarray}\]

Let \(x \in \mathcal{X}_{\theta_{0}, \theta_{1}}\) be fixed. Suppose that \(p_{\theta_{1}}(x)/p_{\theta_{0}}(x) > k\). To show $\phi(x) = 1$, it is sufficient to see $T(x) > c$. By definition of $k$, there exists \(x^{\prime} \in \mathcal{X}_{\theta_{0}, \theta_{1}}\) such that

\[k \le \frac{p_{\theta_{1}}(x^{\prime})}{p_{\theta_{0}}(x^{\prime})} < \frac{p_{\theta_{1}}(x)}{p_{\theta_{0}}(x)}, \ T(x^{\prime}) \ge c .\]

If we assume $T(x) \le c$, by definiiton of monotone likelihood ratio,

\[\begin{eqnarray} \frac{ p_{\theta_{1}}(x) }{ p_{\theta_{0}}(x) } & = & H_{\theta_{0}, \theta_{1}}(T(x)) \nonumber \\ & \le & H_{\theta_{0}, \theta_{1}}(c) \nonumber \\ & \le & H(T(x^{\prime})) \nonumber \\ & \le & \frac{ p_{\theta_{1}}(x^{\prime}) }{ p_{\theta_{0}}(x^{\prime}) } \nonumber \end{eqnarray}\]

This is contradiction so that $\phi(x) = 1$. Suppose that \(p_{\theta_{1}}(x)/p_{\theta_{0}}(x) < k\). If $T(x) \ge c$, $k$ cannot be infimum. Hence $T(x) < c$.

From theorem 3.2.6 and \(\eqref{chap03_03_24}\), test $\phi_{0}$ is the most powerful test of hypothesis test \(\Theta_{H}^{\prime} := \{\theta_{0}\}\) and \(\Theta_{K}^{\prime} := \{\theta_{1}\}\) at level \(\alpha^{\prime} := \mathrm{E}_{\theta_{0}}[\phi_{0}]\).

Let $\phi$ be test for \(\Theta_{H}\) and \(\Theta_{K}\) at level \(\alpha^{\prime}\). Then $\phi$ is also test for \(\Theta_{H}^{\prime}\) and \(\Theta_{K}^{\prime}\) at level \(\alpha^{\prime}\). Hence

\[\begin{equation} \mathrm{E}_{\theta_{1}} \left[ \phi_{0} \right] \ge \mathrm{E}_{\theta_{1}} \left[ \phi \right] \label{chap03_03_26} \end{equation} .\]

\(\theta_{1}\) is arbitrary fixed so that \(\eqref{chap03_03_26}\) holds for all \(\theta_{1} \in \Theta_{K}\).

Now we show that \(\eqref{chap03_monotone_likehood_ratio_level_alpha_test}\). It suffices to show that

\[\forall \theta_{2} < \theta_{0}, \ \mathrm{E}_{\theta_{2}} \left[ \phi_{0} \right] \le \alpha^{\prime}\]

With out loss of generality, \(\mathrm{E}_{\theta_{2}}[\phi_{0}] > 0\). Indeed, if \(\mathrm{E}_{\theta_{2}}[\phi_{0}] = 0\), the equation always holds since \(0 \le \alpha^{\prime}\). Let $\theta_{2} < \theta_{0}$ be fixed. From discussion above, \(\phi_{0}\) is the most powerful test at level \(\alpha^{\prime\prime} := \mathrm{E}_{\theta_{2}}[\phi_{0}]\) for hypothesis \(\Theta_{H}^{\prime\prime} := \{\theta_{2}\}\) and alternatives \(\Theta_{K}^{\prime\prime} := \{\theta_{0} \}\) by substituting \(\theta_{2}\) for \(\theta_{0}\) and \(\theta_{0}\) for \(\theta_{1}\), respectively. Since \(\alpha^{\prime\prime}\) is one of tests at level \(\alpha^{\prime\prime}\) for hypothesis \(\Theta_{H}^{\prime\prime}\) and alternatives \(\Theta_{K}^{\prime\prime}\), we have

\[\begin{eqnarray} & & \mathrm{E}_{\theta_{0}}[\alpha^{\prime\prime}] \le \mathrm{E}_{\theta_{0}}[\phi_{0}] \nonumber \\ & \Leftrightarrow & \alpha^{\prime\prime} \le \mathrm{E}_{\theta_{0}}[\phi_{0}] \nonumber \\ & \Leftrightarrow & \mathrm{E}_{\theta_{2}}[\phi_{0}] \le \mathrm{E}_{\theta_{0}}[\phi_{0}] = \alpha^{\prime} \nonumber \end{eqnarray}\]

(b)

Let

\[F(u) := P_{\theta_{0}}(T \le u) .\]

Then there exists $c \in \mathbb{R}$ such that

\[F(c-) \le 1 - \alpha \le F(c) .\]

Now, let

\[\gamma := \begin{cases} 0 & F(c) - F(c-) = 0 \\ \frac{ (\alpha - 1 + F(c)) }{ F(c) - F(c-) } & F(c) - F(c-) > 0 \end{cases} .\]

Then $\phi_{0}$ defined in \(\eqref{chap03_03_22_test}\) is the most powerful test at level \(\alpha := \mathrm{E}_{\theta_{0}}[\phi_{0}]\) for hypothesis \(\Theta_{H}\) and alternative \(\Theta_{K}\) by (a).

3.5.6 Generalized Neyman Peason’s lemma

Theorem 3.28 Generalized neyman pearson fundamental lemma

\[c := (c_{1}, \ldots, c_{m}) \in \mathbb{R}^{m}, \ \Phi_{c} := \left\{ \phi \in \Phi \mid \int_{\mathcal{X}} \phi(x) f_{i}(x) \ \mu(dx) = c_{i}, (i = 1, \ldots, m) \right\} \neq \emptyset .\]

Then

(a) Let \(\phi_{0} \in \Phi_{c}\). If there eixist \(k_{1}, \ldots, k_{m} \in \mathbb{R}\) such that

\[\begin{equation} \phi_{0}(x) = \begin{cases} 1 & (g(x) > \sum_{i=1}^{m}k_{i}f_{i}(x)) \\ 0 & (g(x) < \sum_{i=1}^{m}k_{i}f_{i}(x)) \end{cases} \ \mu \text{-a.e.} \label{chap03_03_27_test} \end{equation} ,\]

then

\[\int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) = \sup \left\{ \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) \mid \phi \in \Phi_{c} \right\} .\]

(b) Let \(\phi_{0} \in \Phi_{c}\). If there exists \(k_{1}, \ldots, k_{m} \in \mathbb{R}_{\ge 0}\) such that \(\eqref{chap03_03_27_test}\) is satisfied, then

\[\int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) = \sup \left\{ \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) \mid \phi \in \Phi, \ \int_{\mathcal{X}} \phi(x) f_{i}(x) \ \mu(dx) \le c_{i} (i = 1, \ldots, m) \right\}\]

proof

(a)

Since \(\phi_{0} \in \Phi_{c}\),

\[\begin{eqnarray} \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi_{0}(x) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \end{eqnarray}\]

On the other hand, for all $\phi \in \Phi_{c}$

\[\begin{eqnarray} \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & = & \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi(x) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) . \nonumber \end{eqnarray}\]

Therefore,

\[\begin{eqnarray} \forall \phi \in \Phi_{c}, \ \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) + \sum_{i=1}^{m} k_{i}c_{i} - \sum_{i=1}^{m} k_{i}c_{i} \nonumber \\ & = & \int_{\mathcal{X}} (\phi_{0}(x) - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & = & \int_{g(x) > \sum_{j=1}^{m}k_{i}f_{i}(x)} (1 - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\]

(b)

For simplicity, let

\[B := \left\{ \phi \in \Phi \mid \int_{\mathcal{X}} \phi(x)f_{i}(x) \ \mu(dx), \le c_{i} \ (i = 1, \ldots, m) \right\} .\]

Since $\phi_{0} \in \Phi_{c}$, we have $\phi \in B$. For all $\phi \in B$,

\[\begin{eqnarray} \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & \le & \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) . \nonumber \end{eqnarray}\]

Therefore,

\[\begin{eqnarray} \forall \phi \in B, \ \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} - \left( \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} \right) \nonumber \\ & \ge & \int_{\mathcal{X}} (\phi_{0}(x) - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & = & \int_{g(x) > \sum_{j=1}^{m}k_{i}f_{i}(x)} (1 - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\]

Remark

3.5.7 unbiased test

Definition 3.29 Unbiased test

$\phi$ is said to be unibiased if

\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi \right] \ge \alpha .\]

That is, power of the test $\phi$ is uniformly higher or equal to power of a trivial test $\phi^{\prime} \equiv \alpha$ at level $\alpha$.

We denote $\Phi_{\alpha}^{\mu}$ by a set of all unibiased test at level $\alpha$.

Remark

A trival test $\phi^{\prime} \equiv \alpha$ at level $\alpha$ is interpreted as the test is accepted at random with the probability $\alpha$. An unbiased test at level $\alpha$ means that the unbiased test is not worse than at random.

Definition 3.30

$\phi$ is said to be similar to $\Theta^{\prime}$ if

\[\exists c \in \mathbb{R} \text{ s.t. } \forall \theta \in \Theta^{\prime}, \ c = \mathrm{E}_{\theta} \left[ \phi \right] .\]

Proposition 3.31

Then $\phi$ is similar to $\Theta^{\prime}$.

proof

Let $\theta \in \Theta^{\prime}$ and $\epsilon > 0$ be fixed. Since $\beta_{\phi}$ is continuous,

\[\exists \theta_{0} \in \Theta_{0}, \ \exists \theta_{1} \in \Theta_{1}, \ \text{ s.t. } \ | \mathrm{E}_{\theta_{i}} \left[ \phi \right] - \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] | \le \epsilon \ (i = 0, 1)\]

$\phi$ is unbiased,

\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi \right] \ge \alpha .\]

Then

\[\begin{eqnarray} \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] \right| & \le & \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] - \mathrm{E}_{\theta_{0}} \left[ \phi \right] \right| + \left| \mathrm{E}_{\theta_{0}} \left[ \phi \right] \right| \nonumber \\ & \le & \epsilon + \alpha \nonumber \end{eqnarray}\] \[\begin{eqnarray} \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] \right| & \ge & - \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] - \mathrm{E}_{\theta_{1}} \left[ \phi \right] \right| + \left| \mathrm{E}_{\theta_{1}} \left[ \phi \right] \right| \nonumber \\ & \ge & - \epsilon + \alpha \nonumber \end{eqnarray}\]

Since $\epsilon$ is arbitrary, \(\beta_{\phi}(\theta^{\prime}) = \alpha\).

Proposition 3.32

\[\Phi_{\alpha}^{\prime} := \{ \phi \in \Phi \mid \mathrm{E}_{\theta} \left[ \phi \right] = \alpha \ (\theta \in \Theta^{\prime}) \}\]

If $\phi_{0}$ satisfies

\[\begin{eqnarray} \forall \theta \in \Theta_{0}, \ \forall \phi \in \Phi_{\alpha}^{\prime}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] & \le & \mathrm{E}_{\theta} \left[ \phi \right] \nonumber \\ \forall \theta \in \Theta_{1}, \ \forall \phi \in \Phi_{\alpha}^{\prime}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] & \ge & \mathrm{E}_{\theta} \left[ \phi \right] \nonumber \end{eqnarray}\]

then, $\phi_{0}$ is a unbiased test at level $\alpha$ for hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$.

proof

Since $\phi \equiv \alpha \in \Phi_{\alpha}^{\prime}$ and assumptions of $\phi_{0}$, we obtain

\[\forall \theta \in \Theta_{0}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] \le \alpha .\]

Hence $\phi_{0}$ is test at level $\alpha$. Similarly, we obtain

\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] \ge \alpha .\]

Therefore $\phi_{0}$ is unbiased test.

$\Box$

Remark

From both proposition, we can find an unbiased test by finding the best test only in a set of similar tests.

\[\frac{ d P_{\theta} }{ d \mu }(x) = \exp \left( \sum_{i=1}^{m} \theta_{i} T_{i}(x) - \psi(\theta) \right) g(x) .\] \[\begin{eqnarray} t^{*} & := & (t_{2}, \ldots, t_{m}), \quad (t := (t_{1}, \ldots, t_{m}) \in \mathbb{R}^{m}) \nonumber \\ \theta^{*} & := & (\theta_{2}, \ldots, \theta_{m}), \quad (\theta := (\theta_{1}, \ldots, \theta_{m}) \in \Theta) \nonumber \\ \Theta^{*} & := & \{\theta^{*} \mid \theta \in \Theta\}, \nonumber \\ T^{*} & := & (T_{2}, \ldots, T_{m}) \nonumber \end{eqnarray}\]

Theorem 3.33

For test for hypothesis $\Theta_{0}$ and alternatiev $\Theta_{1}$, there exists uniformly most powerful test at level level $\alpha$ such that

\[\phi_{0}(x) = \begin{cases} 1 & (T_{1}(x) < u_{1}(T^{*}(x)) \lor T_{1}(x) > u_{2}(T^{*}(x))) \\ \gamma_{1}(T^{*}(x)) & T_{1}(x) = u_{1}(T^{*}(x)) \\ \gamma_{2}(T^{*}(x)) & T_{1}(x) = u_{2}(T^{*}(x)) \\ 0 & u_{1}(T^{*}(x)) < T_{1}(x) < u_{2}(T^{*}(x)) \end{cases}\]

where

proof

Since $\Theta$ is an open interval, $(b , \theta^{*})$ is an interior point for all $\theta \in \Theta$. By proposition 3.31, any unbiased test at level $\alpha$ is similar to $\Theta_{0}$:

\[\begin{equation} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] = \alpha \ (\forall \theta \in \Theta) \label{chap03_03_33} . \end{equation}\]

\(\{P_{(b, \theta{*})}\}_{\theta^{*} \in \Theta^{*}}\) is an exponential family. By theorem 3.14, \(T^{*}\) is sufficient to \(\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}\). Moreover, since the inner of $\Theta$ is not empty, $T^{*}$ is complete with respect to \(\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}\) by theorem 3.18. Then follwoing equation holds

\[\begin{equation} \forall \theta^{*} \in \Theta^{*}, \ \mathrm{E}_{(b, \theta^{*})} \left[ \phi \mid T^{*} = \cdot \right] = \alpha \quad P_{(b, \theta^{*})}^{T^{*}} \text{-a.s.} \label{chap03_theorem_03_33_equation_for_03_34} \end{equation}\]

Indeed,

\[\begin{eqnarray} \forall \theta \in \Theta, \ \int_{\mathbb{R}^{m-1}} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \mid T^{*} = t^{*} \right] \ P_{(b, \theta^{*})}^{T^{*}}(d t^{*}) & = & \int_{(T^{*})^{-1}(\mathbb{R}^{m-1})} \phi(x) \ P_{(b, \theta^{*})}(dx) \nonumber \\ & = & \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] \nonumber \\ & = & \alpha \nonumber \end{eqnarray}\]

Then by completeness of $T^{*}$ with respect to \(\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}\), we obtain the equation \(\eqref{chap03_theorem_03_33_equation_for_03_34}\). Now we show

\[\begin{eqnarray} \forall \theta \in \Theta, \ \mathrm{E}_{(b, \theta^{*})} \left[ \left. \phi \right| T^{*} \right] = \alpha \quad P_{(b, \theta^{*})} \text{-a.s.} \label{chap03_03_34} \end{eqnarray}\]

By using \(\eqref{chap03_theorem_03_33_equation_for_03_34}\) and the definition of conditional expectation, we have

\[\begin{eqnarray} \forall \theta \in \Theta, \ \forall (T^{*})^{-1}(B) \in \sigma(T^{*}), \ \int_{(T^{*})^{-1}(B)} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \mid T^{*} \right](x) \ P_{(b, \theta^{*})}(dx) & = & \int_{(T^{*})^{-1}(B)} \phi(x) \ P_{(b, \theta^{*})}(dx) \nonumber \\ & = & \int_{B} \mathrm{E} \left[ \left. \phi \right| T^{*} = t \right] \ P_{(b, \theta^{*})}^{T^{*}}(dt) \nonumber \\ & = & \int_{B} \alpha \ P_{(b, \theta^{*})}^{T^{*}}(dt) \nonumber \\ & = & \int_{(T^{*})^{-1}(B)} \alpha \ P_{(b, \theta^{*})}(dx) \nonumber \end{eqnarray}\]

Then by the definition of conditional expectation, we obtain \(\eqref{chap03_03_34}\).

By proposition 3.17, \(\beta_{\phi}(\theta)\) is differentialble with respect to $\theta_{1}$.

\[\begin{eqnarray} \frac{\partial}{\partial \theta_{1}} \mathrm{E}_{\theta} \left[ \phi \right] & = & \frac{\partial}{\partial \theta_{1}} \int_{\mathcal{X}} \phi(x) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi(x) \left( T_{1}(x) - \frac{\partial}{\partial \theta_{1}} \psi(\theta) \right) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi(x) T_{1}(x) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) - \int_{\mathcal{X}} \phi(x) \frac{\partial}{\partial \theta_{1}} \psi(\theta) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \nonumber \\ & = & \mathrm{E}_{(\theta_{1}, \theta^{*})} \left[ \phi T_{1} \right] - \mathrm{E}_{(\theta_{1}, \theta^{*})} \left[ \phi \frac{\partial}{\partial \theta_{1}} \psi(\theta) \right] . \nonumber \end{eqnarray}\]

$\phi$ is level $\alpha$ unbiased test so that we have

\[\begin{eqnarray} \forall \theta \in \Theta_{0}, \ \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] & \le & \alpha \quad (\because \text{ level } \alpha) \nonumber \\ \forall \theta \in \Theta_{1}, \ \mathrm{E}_{(\theta_{1}, \theta^{*})} \left[ \phi \right] & \ge & \alpha \quad (\because \text{ unbiased}) . \end{eqnarray}\]

Hence $\beta_{\phi}((\theta_{1}, \theta^{*}))$ achieves the minimum at $\theta = b$ as a function of $\theta_{1}$. From above observations,

\[\begin{eqnarray} & & \mathrm{E}_{(b, \theta^{*})} \left[ \phi T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] \nonumber \\ & \Leftrightarrow & \mathrm{E}_{(b, \theta^{*})} \left[ \phi T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \alpha \quad (\because \eqref{chap03_03_33}) . \nonumber \end{eqnarray}\]

Since $\phi$ is arbitrary unbiased test at level $\alpha$, we put $\phi \equiv \alpha$.

\[\begin{eqnarray} & & \alpha \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \alpha \nonumber \\ & \Leftrightarrow & \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \nonumber . \end{eqnarray}\]

Then for all level $\alpha$ unbiased test $\phi$ we obtain

\[\mathrm{E}_{(b, \theta^{*})} \left[ \phi T_{1} \right] = \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] \alpha .\]

With the same way discussed in \(\eqref{chap03_03_34}\), we have

\[\begin{equation} \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} = t \right] = \alpha \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \mid T^{*} = t \right] \quad P_{(b, \theta^{*})}^{T^{*}} \text{-a.s.} \label{chap03_theorem_03_33_equation_for_03_35} \end{equation}\]

Indeed,

\[\begin{eqnarray} \forall \theta \in \Theta, \ \int_{\mathbb{R}^{m-1}} \mathrm{E}_{(b, \theta^{*})} \left[ \left. T_{1}\phi \right| T^{*} = t \right] \ P_{(b, \theta^{*})}^{T^{*}}(dt) & = & \int_{(T^{*})^{-1}(\mathbb{R}^{m-1})} T_{1}(x)\phi(x) \ P_{(b, \theta^{*})}(dt) \nonumber \\ & = & \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] \alpha . \nonumber \end{eqnarray}\]

Since $T^{*}$ is completewith respect to \(\{P_{(b, \theta^{*})}\}_{\theta \in \Theta^{*}}\), we obtain \(\eqref{chap03_theorem_03_33_equation_for_03_35}\) Now we show

\[\begin{equation} \forall \theta \in \Theta, \ \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} \right] = \alpha \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \mid T^{*} \right] \quad P_{(b, \theta^{*})} \text{-a.s.} \label{chap03_03_35} \end{equation}\]

Indeed,

\[\begin{eqnarray} \forall \theta \in \Theta, \ \forall (T^{*})^{-1}(B) \in \sigma(T^{*}), \ \int_{(T^{*})^{-1}(B)} \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} \right] \ P_{(b, \theta^{*})}(d x) & = & \int_{(T^{*})^{-1}(B)} T_{1}\phi \ P_{(b, \theta^{*})}(d x) \nonumber \\ & = & \int_{B} \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} = t \right] \ P_{(b, \theta^{*})}^{T^{*}}(d t) \nonumber \\ & = & \int_{B} \alpha \mathrm{E}_{(b, \theta^{*}} \left[ T_{1} \right] \ P_{(b, \theta^{*})}^{T^{*}}(d t) \nonumber \\ & = & \int_{(T^{*})^{-1}(B)} \alpha \mathrm{E}_{(b, \theta^{*}} \left[ T_{1} \right] \ P_{(b, \theta^{*})}(d x) \end{eqnarray}\]

Then by the definition of conditional expectation, we obtain \(\eqref{chap03_03_35}\).

Let \(\vartheta_{0} := (b, b^{*}) \in \Theta_{0}\), \(\vartheta_{1} := (\theta_{1}, \theta^{*}) \in \Theta_{1}\) and \(t^{*} \in \mathbb{R}^{m - 1}\) be fixed. We denote

\[\begin{eqnarray} \Phi & := & \left\{ f: \mathbb{R}^{m} \rightarrow [0, 1] \mid f: \text{ measurable} \right\} \nonumber \\ \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{(b, b^{*})}(t^{*}, dt) & = & \alpha \label{chap03_theorem_03_33_condition_01} \\ \int_{\mathbb{R}} t f(t_{1}, t^{*}) \ P_{(b, b^{*})}(t^{*}, dt) & = & \int_{\mathbb{R}} \alpha t \ P_{(b, b^{*})}(t^{*}, dt) \label{chap03_theorem_03_33_condition_02} \\ \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}} & := & \left\{ f \in \Phi \mid f: \text{satisfies } \eqref{chap03_theorem_03_33_condition_01} \ \eqref{chap03_theorem_03_33_condition_02} \right\} \label{chap03_theorem_03_33_set_of_functions} \end{eqnarray}\]

We can reduce problem to find $\bar{f} \in \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}}$ such that

\[\begin{eqnarray} \forall f \in \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}}, \ \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt) & \le & \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt) . \label{chap03_theorem_03_33_ump_condition} \end{eqnarray}\]

Indeed, suppose that there exists such $\bar{f}$. Since the above equation holds for all $\vartheta_{1} \in \Theta_{1}$ and $t^{*} \in \mathbb{R}^{m-1}$, we have

\[\begin{eqnarray} & & \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{\theta}(t^{*}, dt) \ P_{\theta}^{T^{*}}(d t^{*}) & \le & \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\theta}(t^{*}, dt) \ P_{\theta}^{T^{*}}(d t^{*}) \nonumber \\ & \Leftrightarrow & \int_{\mathbb{R}^{m}} f(t) \ P_{\theta}^{T}(d t) & \le & \int_{\mathbb{R}^{m}} \bar{f}(t) \ P_{\theta}^{T}(d t) \nonumber \\ & \Leftrightarrow & \int_{\mathbb{R}^{m}} f(T(x)) \ P_{\theta}(d x) & \le & \int_{\mathbb{R}^{m}} \bar{f}(T(x)) \ P_{\theta}(d x) . \nonumber \end{eqnarray}\]

Hence $\bar{f} \circ T$ is the UMP test. Moreover, Since $f \equiv \alpha \in \Phi_{\alpha}^{\vartheta_{0}\vartheta_{1},t^{*}}$, $\bar{f} \circ T$ is unbiased test. By \(\eqref{chap03_theorem_03_33_condition_02}\), we have

\[\begin{eqnarray} & & \int_{\mathbb{R}^{m}} \bar{f}(T(x)) \ P_{(b, b^{*})}(d x) & \le & \alpha . \nonumber \end{eqnarray}\]

Hence $\bar{f} \circ T$ is unbiased UMP at level $\alpha$.

Now we will show the existence of $\bar{f}$. Let \(\vartheta_{0} := (b, b^{*}) \in \Theta_{0}, \vartheta_{1} := (\theta_{1}, \theta^{*}) \in \Theta_{1}\) be fixed. From proposition 3.19 by taking $m_{1} = 1$, $m_{2} = m - 1$, there exists $\sigma$-finite measure \(\mu_{t^{*}}\) such that

\[\begin{eqnarray} \vartheta := \vartheta_{0}, \ \vartheta_{1}, \ N_{\vartheta} & := & \left\{ t_{m_{1}+1:m} \in \mathbb{R}^{m_{2}} \mid \int_{\mathbb{R}^{m_{1}}} \exp \left( \langle \vartheta_{1:m_{1}}, t_{1:m_{1}} \rangle \right) \ \mu_{\vartheta^{*}}(d t_{1:m_{1}}) = 0 \text{ or } \infty \right\} \nonumber \\ P_{\vartheta_{1:m}}^{T^{*}}(N_{\vartheta}) & = & 0 \nonumber \end{eqnarray}\]

Let

\[\begin{eqnarray} N & := & N_{\vartheta_{0}} \cap N_{\vartheta_{1}} . \nonumber \end{eqnarray}\]

Then

\[\begin{eqnarray} \vartheta := \vartheta_{0}, \ \vartheta_{1}, \ \forall t^{*} \in N^{c}, \ P_{\vartheta}(t^{*}, d t_{1}) & = & \frac{ \displaystyle \exp \left( \langle \vartheta_{1}, t_{1} \rangle \right) \nu_{t^{*}}(dt_{1}) }{ K_{\vartheta} } \nonumber \\ K_{\vartheta} & := & \displaystyle \int_{\mathbb{R}^{m_{1}}} \exp \left( \langle \vartheta_{1}, \tau_{1} \rangle \right) \nu_{t^{*}}(d\tau_{1}) \nonumber \end{eqnarray}\]

By taking

$\Phi_{(c_{1}, c_{2})}$ in generalized Neyman-Peason’s lemma equals to \(\eqref{chap03_theorem_03_33_set_of_functions}\).

\[\begin{eqnarray} \int_{\mathbb{R}} g(t) \bar{f}(t_{1}, t^{*}) \ \mu(dx) & = & \int_{\mathbb{R}} \frac{ K_{\vartheta_{0}} }{ K_{\vartheta_{1}} } e^{(\theta_{1} - b)t_{1}} \bar{f}(t_{1}, t^{*}) \frac{ e^{bt_{1}} }{ K_{\vartheta_{0}} } \ \mu_{t^{*}}(d t_{1}) \nonumber \\ & = & \int_{\mathbb{R}} e^{\theta_{1}t_{1}} \bar{f}(t_{1}, t^{*}) \frac{ 1 }{ K_{\vartheta_{1}} } \ \mu_{t^{*}}(d t_{1}) \nonumber \\ & = & \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt_{1}) \nonumber \end{eqnarray}\]

Now we construct $\bar{f} \in \Phi_{\alpha}^{\vartheta_{0}, \vartheta_{1}, t^{*}}$. Let

\[\begin{eqnarray} F^{t^{*}}(z) & := & \int_{(-\infty, z]} \ P_{\vartheta_{0}}(t^{*}, dt_{1}) \nonumber \\ U_{1}^{t^{*}}(p) & := & \inf \{ z \in \mathbb{R} \mid F^{t^{*}}(z) \ge p \} \nonumber \\ U_{2}^{t^{*}}(p) & := & \inf \{ z \in \mathbb{R} \mid F^{t^{*}}(z) \ge 1 - \alpha + p \} \nonumber \\ \Gamma_{1}^{t^{*}}(p) & := & (p - F^{t^{*}}(U_{1}^{t^{*}}(p)-)) (F^{t^{*}}(U_{1}^{t^{*}}(p)) - F^{t^{*}}(U_{1}^{t^{*}}(p)-))^{-} \nonumber \\ \Gamma_{2}^{t^{*}}(p) & := & (F^{t^{*}}(U_{2}^{t^{*}}(p)) - (1 - \alpha) - p) (F^{t^{*}}(U_{2}^{t^{*}}(p)) - F^{t^{*}}(U_{2}^{t^{*}}(p)-))^{-} \nonumber \\ \Psi^{t^{*}}(t_{1}, p) & := & 1_{(-\infty, U_{1}^{t^{*}}(p))}(t) + \Gamma_{1}^{t^{*}}(p) 1_{U_{1}^{t^{*}}(p)}(t) + \Gamma_{2}^{t^{*}}(p) 1_{U_{2}^{t^{*}}(p)}(t) + 1_{(U_{2}^{t^{*}}(p)), \infty)}(t) \nonumber \\ S^{t^{*}}(p) & := & \int_{\mathbb{R}} t \Psi^{t^{*}}(t_{1}, p) \ P_{\vartheta_{0}}(t^{*}, dt_{1}) \nonumber \end{eqnarray}\]

where $x^{-}$ is zero if $x=0$ otherwise $x^{-1}$. Now we show that

\[\exists p^{t^{*}} \in [0, \alpha], \ \text{ s.t. } \ S^{t^{*}}(p^{t^{*}}) = \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{*})}(dt_{1}, t^{*}) .\]

It is enough to show that

\[S^{t^{*}}(0) > \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{*})}(dt_{1}, t^{*}) ,\] \[S^{t^{*}}(0) < \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{*})}(dt_{1}, t^{*}) .\]

Then by intermediate value theorem, we obtain $p^{t^{*}}$. Now we define

\[\bar{p}^{t^{*}} := \inf \{ p \in [0, \alpha] \mid S^{t^{*}}(p) = \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{*})}(dt_{1}, t^{*}) \} .\]

Finally, we constract $\bar{f}$ by

\[\bar{f}(t_{1}, t^{*}) := \Psi^{t^{*}}(t_{1}, p^{t^{*}}) .\]

$\bar{f}$ satisfies \(\eqref{chap03_theorem_03_33_condition_01}\);

\[\begin{eqnarray} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{0}}(t^{*}, d t_{1}) & = & \alpha \nonumber \end{eqnarray}\]

Moreover, $\bar{f}$ satisfies \(\eqref{chap03_theorem_03_33_condition_02}\) by right continuity of $\Psi$ with respect to $p$, that is,

\[\begin{eqnarray} \int_{\mathbb{R}} t \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{0}}(t^{*}, d t_{1}) & = & \alpha \int_{\mathbb{R}} t \ P_{\vartheta_{0}}(t^{*}, d t_{1}) \nonumber \end{eqnarray}\]

By generalized Neyman-Peason’s lemma, the following equation holds

\[\begin{eqnarray} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) g(t_{1}) \ P_{\vartheta_{0}}(t^{*}, dt_{1}) & = & \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) g(t_{1}) \ P_{\vartheta_{1}}(t^{*}, dt_{1}) \nonumber \\ & = & \sup \left\{ \int_{\mathbb{R}} f(t_{1}, t^{*}) g(t_{1}) \ P_{\vartheta_{0}}(t^{*}, dt_{1}) = \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt_{1}) \mid f \in \Psi_{\alpha}^{\vartheta_{0}, \vartheta_{1}, t^{*}} \right\} \nonumber \end{eqnarray}\]

This implies that \(\eqref{chap03_theorem_03_33_ump_condition}\) holds.

$\Box$

3.5.8 two side t-test

Definition (two side t test)

\[\begin{eqnarray} \frac{ d P_{\theta} }{ d \lambda }(x) & = & \frac{ 1 }{ (2 \pi \sigma^{2})^{n/2} } \exp \left( \frac{ -1 }{ 2\sigma^{2} } \sum_{j=1}^{n} (x_{j} - \theta)^{2} \right) \end{eqnarray}\]

where $\lambda$ is Lebesgue’s measure over $(\mathbb{R}^{n}, \mathcal{B}(\mathbb{R}^{n}))$.

\[\begin{eqnarray} \bar{x} & := & \sum_{j=1}^{n} x_{j} / n \nonumber \\ S(x) & := & \sum_{j=1}^{n} (x_{j} - \bar{x})^{2} / n \nonumber \\ T(x) & := & \frac{ \sqrt{n - 1}(\bar{x} - \mu_{0}) }{ S(x) } \nonumber \\ C & := & \{ x \in \mathbb{R}^{n} \mid T(x) \ge t_{n-1}(\alpha) \} \nonumber \\ \phi_{\mathrm{t-test}}(x) & := & 1_{C}(x) \end{eqnarray}\]

$\phi_{\mathrm{t-test}}(x)$ is called two side t-test for hypothesis $\Theta_{0}$ and alternatie $\Theta_{1}$.

Proposition (two side t-test)

two side t-test $\phi_{\mathrm{t-test}}(x)$ is unbiased UMP test.

proof

Test for hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$ is equivalent to test for hypothesis $\Theta_{0}^{\prime}$ and $\Theta_{1}^{\prime}$, where

\[\begin{eqnarray} \theta_{1} & := & \frac{ \mu - \mu_{0} }{ \sigma^{2} }, \nonumber \\ \mu & = & \sigma^{2} \theta_{1} + \mu_{0} \nonumber \\ \theta_{2} & := & \frac{ -1 }{ 2 \sigma^{2} } \nonumber \\ \nonumber \\ \Theta_{0}^{\prime} & := & \{(0, \theta_{2})\} \nonumber \\ \Theta_{1}^{\prime} & := & \{ (\theta_{1}, \theta_{2}) \mid \theta_{1} \in \mathbb{R}, \ \theta_{1} \neq 0 \} \nonumber \end{eqnarray}\]

In this formulation, the family of distribution can be written as

\[\begin{eqnarray} \frac{ d P_{\mu} }{ d \lambda }(x) & = & \exp \left( \log \left( (2 \pi \sigma^{2})^{-n/2} \right) \right) \exp \left( \frac{ -1 }{ 2\sigma^{2} } \sum_{j=1}^{n} (x_{j} - \mu)^{2} \right) \nonumber \\ & = & \exp \left( - \frac{n}{2} \log \left( - \frac{ \pi }{ \theta_{2} } \right) \right) \exp \left( \theta_{2} \sum_{j=1}^{n} (x_{j} - (\sigma^{2} \theta_{1} + \mu_{0}))^{2} \right) \nonumber \\ & = & \exp \left( - \frac{n}{2} \log \left( - \frac{ \pi }{ \theta_{2} } \right) + \theta_{2} \sum_{j=1}^{n} (x_{j} - \mu_{0} - (\frac{-\theta_{1}}{2\theta_{2}}))^{2} \right) \nonumber \\ & = & \exp \left( - \frac{n}{2} \log \left( - \frac{ \pi }{ \theta_{2} } \right) + \theta_{2} \left( \sum_{j=1}^{n} (x_{j} - \mu_{0})^{2} + 2 \sum_{j=1}^{n} (x_{j} - \mu_{0}) (\frac{\theta_{1}}{2\theta_{2}})) + \sum_{j=1}^{n} (\frac{\theta_{1}}{2\theta_{2}}))^{2} \right) \right) \nonumber \\ & = & \exp \left( - \frac{n}{2} \log \left( - \frac{ \pi }{ \theta_{2} } \right) + \theta_{2} T_{2}(x) + \sum_{j=1}^{n} (x_{j} - \mu_{0}) \theta_{1} + \sum_{j=1}^{n} \frac{ \theta_{1}^{2} }{ 4\theta_{2} } \right) \nonumber \\ & = & \exp \left( \theta_{2} T_{2}(x) + \theta_{1} T_{1}(x) + \sum_{j=1}^{n} \frac{ \theta_{1}^{2} }{ 4\theta_{2} } - \frac{n}{2} \log \left( - \frac{ \pi }{ \theta_{2} } \right) + \right) \nonumber \\ & = & \exp \left( \theta_{2} T_{2}(x) + \theta_{1} T_{1}(x) - \psi(\theta) \right) \end{eqnarray}\]

where

\[\begin{eqnarray} T_{1}(x) & := & \sum_{j=1}^{n} (x_{j} - \mu_{0}) \nonumber \\ T_{2}(x) & := & \sum_{j=1}^{n} (x_{j} - \mu_{0})^{2} \nonumber \\ \psi(x) & := & - \sum_{j=1}^{n} \frac{ \theta_{1}^{2} }{ 4\theta_{2} } + \frac{n}{2} \log \left( - \frac{ \pi }{ \theta_{2} } \right) . \nonumber \end{eqnarray}\]

Now we consider the equivalent test. For simplicity, here we write $\Theta_{i}^{\prime}$ as $\Theta_{i}$. By theorem 3.33 and continuity of distribution, there exists unbiases UMP test $\phi_{0}$ at level $\alpha$ such that

\[\phi_{0}(x) := \begin{cases} 1 & (T_{1}(x) < u_{1}(T_{2}(x)) \vee T_{1}(x) \ge u_{2}(T_{2}(x))) \\ 0 & (u_{1}(T_{2}(x)) < T_{1}(x) < u_{2}(T_{2}(x))) \end{cases}\]

where $u_{i}: \mathbb{R} \rightarrow \mathbb{R} \ (i = 1, 2)$ are measurable functions. All unbiased test satisfies \(\eqref{chap03_03_36}\) and \(\eqref{chap03_03_37}\) so that $u_{i}$ should satisfy that

\[\begin{eqnarray} & & \int_{\mathbb{R}} \phi_{0}(t_{1}, t_{2}) p(d t \mid t_{2}) = \alpha \nonumber \\ & \Leftrightarrow & 1 - \int_{\mathbb{R}} 1_{t_{1} \le u_{1}(t_{2})} + 1_{t_{1} \ge u_{2}(t_{2})} p(d t_{1} \mid t_{2}) = 1 - \alpha \nonumber \\ & \Leftrightarrow & \int_{u_{1}(t_{2})}^{u_{2}(t_{2})} p(d t_{1} \mid t_{2}) = 1 - \alpha , \label{chap03_03_39} \end{eqnarray}\]

and

\[\begin{eqnarray} \int_{u_{1}(t_{2})}^{u_{2}(t_{2})} t_{1} p(d t_{1} \mid t_{2}) = (1 - \alpha) \int_{\mathbb{R}} t \ p(dt_{1} \mid t_{2}) . \label{chap03_03_40} \end{eqnarray}\]

Since the measure of boundary is 0 due to continuity of the distributions, we can either include or exclude the boundary.

Now the distributions is the family of normal distributins so that we can explicitly calculate the regular conditional expectation of $T_{1}$ given $T_{2} = t$.

$\Box$