View on GitHub

memo

Chapter1-07. Conditional expectation

1.7 Conditional expectation

1.7.3 regular conditional probability

Definition 1.42 Regular conditional probability

\(\{p(\omega, A) \}_{\omega \in \Omega, A \in \mathcal{F}}\) is said to be regular conditional probability given $\mathcal{G}$ if it satisfies

\[\forall A \in \mathcal{F}, \ \forall B \in \mathcal{B}, \ P(A \cap B) = \int_{B} p(\omega, B) \ P(d \omega) .\]

Regular conditional probability \(\{p(\omega, A)\}\) is said to be unique if for all \(\{p^{\prime}(\omega, A) \}\) satisfying (1), (2) and (3), there exists $P$-null set $N \in \mathcal{G}$ such that

\[\forall \omega \notin N, \ \forall A \in \mathcal{F}, \ p(\omega, A) = p(\omega^{\prime}, A)\]

Definiiton Condition (S)

$(\Omega, \mathcal{F})$ is said to satisfy condition (S) if there exists distance $d$ such that

Remark

\[\mathrm{E} \left[ X \mid \mathcal{G} \right](\omega) = \int_{\Omega} X(\omega^{\prime}) \ p(\omega, d \omega^{\prime}\]

Theorem 1.43

Then there uniquely exists regular probibility measure \(\{p(\omega, A)\}_{\omega \in \Omega, A \in \mathcal{A}}\) given $\mathcal{G}$.

proof

Definition 1.44 Regular conditional distribution

\(\{p(t, A)\}_{t \in \mathcal{T}, A\in \mathcal{A}}\) is said to be regular conditional distribution of $X$ given $T = t$ if it satisfies

\[\forall A \in \mathcal{A}, \ \forall B \in \mathcal{B}, \ P(X \in A, T \in B) = \int_{B} p(t, A) \ P^{T}(dt) .\]

Regular conditional probability \(\{p(t, A)\}\) of $X$ given $T = t$ is said to be unique if for all \(\{p^{\prime}(t, A) \}\) satisfying (1), (2) and (3) there exists $P^{T}$-null set $N \in \mathcal{B}$ such that

\[\forall t \notin N, \ \forall A \in \mathcal{A}, \ p(t, A) = p(t^{\prime}, A) .\]

Theorem 1.45

Then there uniquely exists regular probibility measure \(\{p(\omega, A)\}_{\omega \in \Omega, A \in \mathcal{A}}\) of $X$ given $T = t$.

proof

$\Box$

Remark

\[\int_{\mathcal{T} \times \mathcal{X}} f(t, x) \ P^{(T, X)}(dt, dx) = \int_{\mathcal{T}} \int_{\mathcal{X}} f(t, x) \ p(t, dx) \ P^{T}(dt) .\]

In particular, integrable real-valued r.v. $X$,

\[\mathrm{E} \left[ X \mid T = t \right] = \int_{\mathbb{R}} x \ p(t, dx) \quad P^{T} \text{-a.s.}\]

Indeed,

\[\begin{eqnarray} \forall B \in \sigma(T), \ \int_{\mathcal{T}} 1_{B}(t) \int_{\mathcal{X}} x \ p(t, dx) \ P^{T}(dt) & = & \int_{\mathcal{T}} \int_{\mathcal{X}} 1_{B}(t) x \ p(t, dx) \ P^{T}(dt) \nonumber \\ & = & \int_{\mathcal{T} \times \mathcal{X}} 1_{B}(t) x \ P^{(T, X)}(dt, dx) \nonumber \\ & = & \int_{\mathcal{T}} 1_{B}(t) \int_{\mathcal{X}} x \ P^{X}(dx) \ P^{T}(dt) \nonumber \\ & = & \int_{\mathcal{T}} 1_{B}(t) \int_{X^{-1}(\mathcal{X})} X(\omega) \ P(d\omega) \ P^{T}(dt) \nonumber \end{eqnarray}\]

Here we use the equation above as $f(t, x) \equiv 1_{B}(t)x$ and Fubini-Tonelli theorem. Then we interpret the range of r.v. as $\mathcal{X} = \mathcal{T} = \mathbb{R}$.