1.7 Conditional expectation
1.7.3 regular conditional probability
Definition 1.42 Regular conditional probability
- $(\Omega, \mathcal{F}, P)$,
- probability sp.
- $\mathcal{G} \subseteq \mathcal{F}$,
- sub $\sigma$-algebra
- $p(\omega, A) \ (\omega \in \Omega, A \in \mathcal{A}) \in [0, 1]$
\(\{p(\omega, A) \}_{\omega \in \Omega, A \in \mathcal{F}}\) is said to be regular conditional probability given $\mathcal{G}$ if it satisfies
- (1) For all $\omega \in \Omega$, a map $p(\omega, \cdot): \mathcal{F} \rightarrow [0, 1]$ is probability measure over $(\Omega, \mathcal{F})$,
- (2) For all $A \in \mathcal{A}$, a map $p(\cdot, A): \Omega \rightarrow [0, 1]$ is $\mathcal{G}$ measurable function,
- (3)
Regular conditional probability \(\{p(\omega, A)\}\) is said to be unique if for all \(\{p^{\prime}(\omega, A) \}\) satisfying (1), (2) and (3), there exists $P$-null set $N \in \mathcal{G}$ such that
\[\forall \omega \notin N, \ \forall A \in \mathcal{F}, \ p(\omega, A) = p(\omega^{\prime}, A)\]Definiiton Condition (S)
- $(\Omega, \mathcal{F})$,
- measurable sp.
$(\Omega, \mathcal{F})$ is said to satisfy condition (S) if there exists distance $d$ such that
- $(\Omega, d)$ is complete separable distance space,
- $\mathcal{F}$ is borrel $\sigma$ algebra of $(\Omega, d)$.
Remark
- $X: \Omega \rightarrow \mathbb{R}$
- integrable r.v.
Theorem 1.43
- $(\Omega, \mathcal{F})$,
- satisfies condition (S)
- $P$
- probability measure over $(\Omega, \mathcal{F})$,
- $\mathcal{G} \subseteq \mathcal{F}$,
- sub $\sigma$-algebra
Then there uniquely exists regular probibility measure \(\{p(\omega, A)\}_{\omega \in \Omega, A \in \mathcal{A}}\) given $\mathcal{G}$.
proof
Definition 1.44 Regular conditional distribution
- $(\Omega, \mathcal{F})$,
- measurable sp.
- $(\mathcal{X}, \mathcal{A})$,
- measurable sp.
- $(\mathcal{T}, \mathcal{B})$,
- measurable sp.
- $X: \Omega \rightarrow \mathcal{X}$,
- measurable
- $T: \Omega \rightarrow \mathcal{T}$,
- measurable
- $P: \Omega \rightarrow [0, 1]$
- probability measure over $(\Omega, \mathcal{F})$
- $p(t, A) \in [0, 1]\ (t \in \mathcal{T}, A \in \mathcal{A})$
\(\{p(t, A)\}_{t \in \mathcal{T}, A\in \mathcal{A}}\) is said to be regular conditional distribution of $X$ given $T = t$ if it satisfies
- (1) For all $t \in \mathcal{T}$, a map $p(t, \cdot): \mathcal{A} \rightarrow [0, 1]$ is probability measure over $(\mathcal{X}, \mathcal{A})$,
- (2) For all $A \in \mathcal{A}$, a map $p(\cdot, A): \mathcal{X} \rightarrow [0, 1]$ is $\mathcal{B}$ measurable,
- (3)
Regular conditional probability \(\{p(t, A)\}\) of $X$ given $T = t$ is said to be unique if for all \(\{p^{\prime}(t, A) \}\) satisfying (1), (2) and (3) there exists $P^{T}$-null set $N \in \mathcal{B}$ such that
\[\forall t \notin N, \ \forall A \in \mathcal{A}, \ p(t, A) = p(t^{\prime}, A) .\]Theorem 1.45
- $(\mathcal{X}, \mathcal{A})$,
- measurable sp.
- satisfying condition (S)
Then there uniquely exists regular probibility measure \(\{p(\omega, A)\}_{\omega \in \Omega, A \in \mathcal{A}}\) of $X$ given $T = t$.
proof
Remark
- $f: \mathcal{T} \times \mathcal{X} \rightarrow \mathbb{R}$,
- $\mathcal{B} \times \mathcal{A}$ measurable function
- $P^{(T, X)}$ integrable
In particular, integrable real-valued r.v. $X$,
\[\mathrm{E} \left[ X \mid T = t \right] = \int_{\mathbb{R}} x \ p(t, dx) \quad P^{T} \text{-a.s.}\]Indeed,
\[\begin{eqnarray} \forall B \in \sigma(T), \ \int_{\mathcal{T}} 1_{B}(t) \int_{\mathcal{X}} x \ p(t, dx) \ P^{T}(dt) & = & \int_{\mathcal{T}} \int_{\mathcal{X}} 1_{B}(t) x \ p(t, dx) \ P^{T}(dt) \nonumber \\ & = & \int_{\mathcal{T} \times \mathcal{X}} 1_{B}(t) x \ P^{(T, X)}(dt, dx) \nonumber \\ & = & \int_{\mathcal{T}} 1_{B}(t) \int_{\mathcal{X}} x \ P^{X}(dx) \ P^{T}(dt) \nonumber \\ & = & \int_{\mathcal{T}} 1_{B}(t) \int_{X^{-1}(\mathcal{X})} X(\omega) \ P(d\omega) \ P^{T}(dt) \nonumber \end{eqnarray}\]Here we use the equation above as $f(t, x) \equiv 1_{B}(t)x$ and Fubini-Tonelli theorem. Then we interpret the range of r.v. as $\mathcal{X} = \mathcal{T} = \mathbb{R}$.