11-1. Covectors
Tangent Covevtors on Manifolds
Definition
■
Covector Fields
Definition Cotangent bundle
- $M$,
- smooth manifold with or without boundary
is called the cotangent bundle of $M$. $\pi: T^{*}M \rightarrow M$.
\[\pi((p, \omega)) = p .\]■
Definition Covector field
- $M$,
- smooth manifold with or without boundary
- $\omega: M \rightarrow T^{*}M$,
$\omega$ is said to be covector field if
\[\pi \circ \omega = \mathrm{Id}_{M} .\]Let $\lambda^{i}: TM \rightarrow \mathbb{R}$ be a basis of $T^{*}M$.
\[\omega(p) = \omega_{i}(p) \left. \lambda^{i} \right|_{p}\]where $\omega_{i}: M \rightarrow \mathbb{R}$ be a component function.
■