View on GitHub

memo

Interest Rate Modeling 1

4

4.2 Fixed Income Probability Measures

4.2.1 Risk Neutral Measure

4.2.2 $T$-Forward Measure

4.2.3 Spot Measure

4.2.4 Terminal and Hybrid Measures

4.2.5 Swap Measures

4.3 Multi-Currency Markets

4.3.1 Notations and FX Forwards

外国のzero coupon bondを$\tilde{P}_{d}(t, T)$

\[\tilde{P}_{d}(t, T) := X(t)P_{f}(t, t).\] \[X_{T}(t) := \frac{\tilde{P}_{d}(t, T)}{P_{d}(t, T)} = X(t) \frac{P_{f}(t, T)}{P_{d}(t, T)}\]

$X_{T}(t)$はforwrad FX rateという。 forward FX rateの由来は以下の裁定取引による。

\[\frac{\tilde{P}_{d}(t, T)}{X(t)P_{f}(t, T)}X(T) - \frac{\tilde{P}_{d}(t, T)}{P_{d}(t, T)} = X(T) - X_{T}(t)\]

よって、無裁定の下では$X(T) = X_{T}(t)$で、$X_{T}(t)$が$T$で外国通貨1単位得るのに必要な国内通貨になる。

4.3.2 Risk Neutral Measures

$g(\cdot)$が$T$でforeign currencyでのpayoffとすると、foreign measureの下

\[\begin{equation} V_{f}(t) = \beta_{f}(t) \mathrm{E}_{t}^{f} \left[ \frac{g(T)}{\beta_{f}(T)} \right], \label{chap4_27_value_under_foreign_risk_neutral_measure} \end{equation}\]

である。 一方、domestic risk-neutral measureの下では、

\[\begin{equation} V_{d}(t) = \beta_{d}(t) \mathrm{E}_{t}^{d} \left[ \frac{g(T)X(T)}{\beta_{d}(T)} \right] \label{chap4_28_value_under_domestic_risk_neutral_measure} \end{equation}\]

である。 無裁定のででは

\[\begin{eqnarray} V_{d}(t) & = & X(t)V_{f}(t) \nonumber \\ \iff \beta_{f}(t)\mathrm{E}_{t}^{d} \left[ \frac{g(T)X(T)}{\beta_{d}(T)} \right] & = & X(t) \beta_{f}(t) \mathrm{E}_{t}^{f} \left[ \frac{g(T)}{\beta_{f}(T)} \right] \label{chap4_29_equation} \end{eqnarray}\]

である。

Lemma 4.3.1

\[\mathrm{E}^{d} \left[ \frac{d Q^{f}}{d Q^{d}} \right] = \frac{\beta_{f}(t) X(t)}{\beta_{d}(t) X(0)}, \quad t \ge 0\]

sketch of proof

$\mathcal{F}{t}$-measurable variable $Y(T) := g(T) X(T) / \beta{d}(T)$とおくと、$\eqref{chap4_29_equation}$は

\[\mathrm{E}_{t}^{d} \left[ Y(T) \right] = X(t) \frac{\beta_{f}(t)}{\beta_{d}(t)} \mathrm{E}_{t}^{f} \left[ \frac{Y(T)}{X(T)} \frac{\beta_{d}(T)}{\beta_{f}(T)} \right],\]

TODO

4.3.3 Other Measures

4.4 The HJM Analysis

4.4.1 Bond Price Dynamics

4.4.2 Forward Rate Dynamics

4.4.3 Short Rate Process

4.5 Examples of HJM Models

4.5.1 The Gaussian Models

4.5.2 Gaussian HJM Models

4.5.3 Log-Normal HJM Models