5.1 Uniform boundedness principle
Theorem 5.1 Uniform bounded principle
- $X$
- banach space
- $Y$
- norm space
- $\mathcal{A} \subset \mathcal{L}(X, Y)$
proof
\[F_{n} := \left\{ u \in X \mid \sup_{A \in \mathcal{A}} \|A u\| \le n \right\} \ (n \in \mathbb{N}) .\]$F_{n}$ satisfies the condition of Baire’s category theorem. Indeed, we first show that $F_{n}$ is closed in $X$. Let $u_{n} \in F_{n}$, $u_{n} \rightarrow u \in X$.
\[\forall A \in \mathcal{A}, \ \|Au_{k}\| \le n\]Then by taking the limit $k \rightarrow \infty$, we have
\[\forall A \in \mathcal{A}, \ \|Au\| \le n .\]It follows that $u \in F_{n}$. Hence $F_{n}$ is closed. We next show that $X := \bigcup_{n \in \mathbb{N}}F_{n}$. Let $u \in X$. By our assumption, there exists $n \in \mathbb{N}$ such that
\[\sup_{A \in \mathcal{A}} \|Au\| \le n .\]It follows that $u \in F_{n}. Hence \(X := \bigcup_{n \in \mathbb{N}}F_{n}\).
Since $X$ is Banach space, $F_{n}$ contains at least a interior point by Baire’s category theorem. Therefore,
\[\exists N \in \mathbb{N}, \ a \in X, \ r > 0, \ \text{ s.t. } \ \overline{B(a, r)} \subseteq F_{N} .\]Let $u \in X$, $|u | \le r$. Since $a + u, a \in \overline{B(a, r)}$,
\[\forall A \in \mathcal{A}, \ \|A u \| \le \|A(u + a)\| + \|A a \| \le 2 N .\]Hence
\[\forall A \in \mathcal{A}, \ \sup_{\|u \| \le r} \|A u\| \le 2N .\]It follows that
\[\forall A \in \mathcal{A}, \ \sup_{\|u \| \le 1} \|A u\| \le \frac{2N}{r} .\]Therefore,
\[\|A\| \le \frac{2N}{r} < \infty .\]Since $A \in \mathcal{A}$ is arbitrary, the statement holds.
Example
- $X := L^{2}(\Omega)$,
proposition 5.1
- $\phi: \Omega \rightarrow \mathbb{R}$,
- measurable function
If $u \overline{\phi}$ is integrable for all $u \in L^{2}(\Omega)$,
\[\phi \in L^{2}(\Omega) .\]proof
It is enough to show that $|\phi(x)| < \infty$ for all $x$. Indeed,
\[\begin{eqnarray} \int_{\Omega} \phi(x) \phi(x) \ \mu(dx) & \le & \int_{\Omega} |\phi(x)|^{2} \ \mu(dx) \end{eqnarray}\]Let
\[\Omega_{n} := \{ x \in \Omega \mid |x| < m, \quad |\phi(x)| < n \} \quad (n \in \mathbb{N}) .\]$\Omega_{n}$ is a measurable set in $\Omega$. Let \(\phi_{n} := 1_{\Omega_{n}} \phi\). $\phi_{n}$ is measurable, bounded and equal to 0 out of \(\{x \in \Omega \mid |x| < n\}\).
\[\begin{eqnarray} f_{n}(u) & := & (u, \phi_{n})_{L^{2}(\Omega)} \nonumber \\ & = & \int_{\Omega} u(x) \overline{\phi_{n}(x)} \ dx . \end{eqnarray}\]Then $f_{n} \in X^{*} := \mathcal{L}(X, K)$. From \(\eqref{chap03_04_03_48}\), we have \(\|\phi_{n}\|_{X} = \|f_{n}\|_{X^{*}}\).
We next show that \(\{f_{n}\}\) is bounded. Let $u \in X$ be fixed. By our assumption,
\[\begin{eqnarray} |f_{n}(u)| & \le & \int_{\Omega} |u(x)\overline{\phi_{n}(x)}| \ dx \nonumber \\ & = & \int_{\Omega_{n}} |u(x)\overline{\phi(x)}| \ dx \nonumber \\ & = & \int_{\Omega} |u(x)\overline{\phi(x)}| \ dx \nonumber \\ & =: & M_{u} \nonumber . \end{eqnarray}\]$M_{u}$ is independent on $n$ so that
\[\sup_{n \in \mathbb{N}} |f_{n}(u)| \le M_{u} < \infty \quad (u \in X) .\]It follows that the assumptions in theorem 5.1 are satisfied with $Y = K$, \(\mathcal{A} = \{f_{n}\}\). Therefore, by theorem 5.1, there exists $M \ge 0$ such that
\[\|f_{n}\| = \|\phi_{n}\| \le M .\]Since \(\{\Omega_{n}\}_{n \in \mathbb{N}}\) is monotonically ingcreasing and \(\bigcup_{n=1}^{n} \Omega_{n} = \Omega\). Hence \(\{|\phi_{n}(x)|^{2}\}_{n \in \mathbb{N}}\) is a monotonically nondecreasing sequence of non negative functions. Moreover, $\phi_{n}(x) \rightarrow \phi(x)$.
\[\begin{eqnarray} \int_{\Omega} |\phi(x)|^{2} \ dx & = & \lim_{n \rightarrow \infty} \int_{\Omega} |\phi(x)|^{2} \ dx \nonumber \\ & \le & M^{2} . \nonumber \end{eqnarray}\]Therefore, $\phi \in L^{2}(\Omega)$.
TBD
Theorem 5.2
- $X$,
- Hilbert space
- $\Omega \supseteq \mathbb{C}$,
- region
- $A: \Omega \rightarrow \mathcal{L}(\Omega)$,
If $(A(z)u, v)$ is holomorphic in $\Omega$ for all $u, v \in X$, then $A(z)$ is $\mathcal{L}(X)$ valued holomorphic function in $\Omega$.
proof
TBD
Definition 5.1
- $X, Y$,
- norm space
- $A_{n} \in \mathcal{L}(X, Y)$,
- $A \in \mathcal{L}(X, Y)$,
$(A_{n})$ is strongly converge to $A$ if
\[\forall u \in X, \ \lim A_{n} = Au .\]We denote strong convergence by
\[\mathop{\text{s-lim}}_{n \rightarrow \infty} A_{n} = A .\]Remark
\[\|A_{n} - A\| \rightarrow 0 \Rightarrow \mathop{\text{s-lim}}_{x} A_{n} = A .\]Indeed,
\[\begin{eqnarray} & & \|A_{n} - A\| \rightarrow 0 \nonumber \\ & \Rightarrow & \|A_{n}u - A_{n}u\| \le \|A_{n} - A\| \|u\| \rightarrow 0 . \nonumber \end{eqnarray}\]Example 5.1
- $X := L^{p}(0, \infty)$,
- $1 \le p < \infty$,
Hence $A_{n}$ strongly converge to 0. On the other hand, if $x \le n$ then
\[\forall u \in L^{p}, \ u(x) = 0, \Rightarrow \|A_{n}u\| = \|u\| .\]Therefore, \(\|A_{n}\| = \|A_{n} - 0\| = 1\).
Theorem 5.3
- $X$,
- Banach space
- $Y$,
- norm space
- $A_{n} \in \mathcal{L}(X, Y)$,
- $\forall u \in X$, $\lim_{n \rightarrow \infty}A_{n}u \in Y$,
Then
- (i) \(\{A_{n}\}_{n \in \mathbb{N}}\) is bounded in $\mathcal{L}(X, Y)$,
- (ii) $\mathop{s-\lim} A_{n} =: A \in \mathcal{L}(X, Y)$
proof
(i)
For all $u \in X$, \(\{A_{n} u\}_{n \in \mathbb{N}}\) is bounded sequence. By applying theorem 5.1, we have
\[\sup_{n \in \mathbb{N}} \|A_{n}\| < \infty .\](ii)
Let
\[Au := \lim_{n \rightarrow \infty} A_{n} u \ (u \in X) .\]Obviously, $A: X \rightarrow Y$ is linear. From (i), there exists $M$ such that \(\|A_{n}\| \le M\).
\[\|Au \| = \lim_{n \rightarrow \infty} \|A_{n} u\| \le M \|u\| .\]Therefore, $A \in \mathcal{L}(X, Y)$.
Proposition 5.2
- $A_{n}, A \in \mathcal{L}(X, Y)$,
- \(\{A_{n}\}_{n \in \mathbb{N}}\),
- bounded
- $X_{0}$,
- dense in $X$
Then
\[\mathop{\text{s-lim}}_{n \rightarrow \infty} A_{n} = A .\]proof
Since $A$ and \(\{A_{n}\}\) are bounded, we can take $M > 0$ such that
\[\|A\|, \|A_{n}\| \le M .\]We show that
\[\forall u \in X, \ \forall \gamma > 0, \ \exists n_{0} \in \mathbb{N}, \text{ s.t. } \|A_{n} u - Au\| < \gamma \quad (n > n_{0}) .\]Let $u \in X$ and $\gamma > 0$ be fixed. Since $X_{0}$ is dense in $X$, there exists $v \in X_{0}$ such that
\[\|u - v\| < \frac{ \gamma }{ 3M } .\]By assumption \(\|A_{n}\| < M\),
\[\begin{eqnarray} \|A_{n} u - A u\| & \le & \|A_{n} u - A_{n}v\| + \|A_{n} u - A_{n}v\| + \|Av - Au\| \nonumber \\ & \le & 2M \|u - v\| + \|A_{n}v - Av\| \nonumber \\ & \le & \frac{2 \gamma}{3} + \|A_{n}v - Av\| \nonumber \end{eqnarray}\]Since there exists $n_{0}$ such that $\forall n \ge n_{0}$, \(\|A_{n}v - Av\|< \frac{\gamma}{3}\).
Example 5.2
TBD
Definition strong continuity
- $X$,
- norm space
- $T_{a}:X \rightarrow \mathbb{R} \ a \in \mathbb{R}$
$T_{a}$ is said to be strong continuous if for all $a \in \mathbb{R}$
\[\mathop{s-lim}_{a^{\prime} \rightarrow a}T_{a^{\prime}} = T_{a} .\]Example 5.3
- $X := L^{p}(\mathbb{R})$,
- $1 \le p < \infty$,
- $T_{a}:X \rightarrow \mathbb{R} \ a \in \mathbb{R}$,
Then
- (1) $T_{a} \in \mathcal{L}(X)$, \(\|T_{a}\| = 1\),
- (2)
proof of (1)
This is ovbious.
proof of (2)
Let $X_{0} := C_{0}(\mathbb{R})$. Then $X_{0}$ is dense in $X$. Now, let $R > 0$ be fixed. There exists $v \in X_{0}$ such that
\[|x| > R, \ v(x) = 0 .\]Since $v$ is uniformly continuous, $T_{a^{\prime}}v$ uniformly converge to $T_{a}v$. Indeed,
\[\forall \epsilon > 0, \ \exists \delta > 0, \ |a^{\prime} - a| < \epsilon \ \Rightarrow \ v(x - a^{\prime}) - v(x - a) < \epsilon .\]On the other hand,
\[|a^{\prime} - a| < 1, \ \{x \in \mathbb{R} \mid |x - a| \le R + 1\}\]. $$
TBD