Theorem 7.2
See modulus of continuity.
proof
$\Box$
Theorem 7.3
- \(\{P_{n}\}\),
- a sequence of probablity measuares on \((C[0, \infty), \mathcal{B}(C[0, \infty))\),
- (1) \(\{P_{n}\}\) is tight,
- (2) (2-i) and (2-ii) holds
(2-i)
\[\begin{eqnarray} \forall > \eta, \ \exists a \in \mathbb{R}, \ n_{0} \in \mathbb{N} \text{ s.t. } \left( \forall n \ge n_{0}, \ P_{n}(x \in S \mid \abs{x(0)} \ge a) \le \eta \right) . \end{eqnarray}\](2-ii)
\[\forall \eta > 0, \ \forall \epsilon > 0, \ \exists \delta \in (0, 1), \ \exists n_{0} \in \mathbb{N} \text{ s.t. } \left( \forall n \ge n_{0}, \ P_{n} ( \omega \in C[0, \infty) \mid m^{T}(\omega, \delta) \ge \epsilon ) \le \eta \right) .\]proof
(1) $\Rightarrow$ (2)
Let $T \in \mathbb{N}$ be fixed. Let $\eta > 0$ and $\epsilon > 0$ be fixed. By defintion of tightness, there exists compact set $K$ such that
\[\begin{eqnarray} \forall n \in \mathbb{N}, \ P_{n}(K) > 1 - \eta . \end{eqnarray}\]Since $K$ is compact, by Theorem 7.2,
\[\begin{eqnarray} & & \sup_{\omega \in K} \abs{ \omega(0) } < \infty \nonumber \\ \forall T > 0, & & \lim_{\delta \rightarrow 0} \sup_{\omega \in K} m^{T}(\omega, \delta) = 0 . \nonumber \end{eqnarray}\]Hence there exists $a \in \mathbb{R}$ such that
\[K \subseteq \{ \omega \in C[0, \infty) \mid \abs{\omega(0)} \le a \} .\]Moreover, since for some $\delta > 0$
\[\begin{eqnarray} \sup_{\omega \in K} m^{T}(\omega, \delta) < \epsilon, \end{eqnarray}\]there exists $\delta > 0$ such that
\[K \subseteq \{ \omega \in C[0, \infty) \mid m^{T}(\omega, \delta) < \epsilon \} .\]Thus,
\[\begin{eqnarray} \eta & \ge & P(K^{c}) \nonumber \\ & \ge & P \left( \omega \in C[0, \infty) \mid m^{T}(\omega, \delta) \ge \epsilon \right) . \nonumber \end{eqnarray}\]Similary,
\[\begin{eqnarray} \eta & \ge & P(K^{c}) \nonumber \\ & \ge & P \left( \omega \in C[0, \infty) \mid \abs{\omega(0)} \ge \epsilon \right) . \nonumber \end{eqnarray}\](1) $\Leftarrow$ (2)
$\Box$