07-06. The chinise remainder theorem
Thorughout this section we assume
- All rings are commutative with indentity $1 \neq 0$,
Definition. comaximal
- $R$,
- ring
- $A, B \subseteq R$,
- ideals
$A$ and $B$ are said to be comaximal if $A + B = R$.
Proposition.
- $R$,
- ring
- $A, B \subseteq R$,
- ideals
The followings are equivalent.
- (i)
- (ii) $A$ and $B$ are comaximal.
proof.
(i) $\Rightarrow$ (ii)
Let $c \in R$. By assumpation,
\[ca + cb = c .\]Since $A$ and $B$ are ideals, $ca \in A$ and $cb \in B$.
(i) $\Leftarrow$ (ii) We know $1 \in R$.
Theorem 17. Chinise Remainder Theorem
- $R$,
- $A_{1}, \ldots, A_{k}$,
- ideals
- $\phi: R \rightarrow R/A_{1} \times \cdots \times R/A_{k}$,
$\phi$ is a ring homomorphisim with kernel $A_{1} \cap A_{2} \cap \cdots \cap A_{k}$. If \(\forall i, j \in \{1, \ldots, k\}\) with $i \neq j$ the ideals $A_{i}$ and $A_{j}$ are comaximal, then
- (i) $\phi$ is surjective,
- (ii)
That is,
\[R/(A_{1}\cdots A_{k}) \cong R/A_{1} \times R/A_{2} \times \cdots \times R/A_{k} .\]proof.
We first show that
\[\mathrm{Ker}\phi = A_{1} \cap \cdots \cap A_{k} .\]It’s easy to see $\mathrm{Ker}\phi_{i} = A_{i}$ for all \(i \in \{1, \ldots, k\}\). Since $\phi = (\phi_{1}, \ldots, \phi_{k})$, $\mathrm{Ker}\phi = A_{1} \cap \cdots \cap A_{k}$.
Now we show the statement for comaximal part by induction. In case of $k = 2$. Let $A = A_{1}$ and $B := A_{2}$. Suppose that $A + B = R$.
(i) There exists $x \in A$, $y \in B$ such that
\[x + y = 1.\]This equation show that
\[\begin{eqnarray} \phi(x) & = & (x + A, x + B) & = & (0, 1) \nonumber \\ \phi(y) & = & (y + A, y + B) & = & (1, 0) \nonumber \end{eqnarray}\]Then
\[\begin{eqnarray} \forall [r_{1}]_{A} \in R/A, \forall [r_{2}]_{B} \in R/B, \ \phi(r_{1}x + r_{2}y) & = & \phi(r_{1})\phi(x) + \phi(r_{2})\phi(y) \nonumber \\ & = & (r_{1} + A, r_{1} + B) (0, 1) + (r_{2} + A, r_{2} + B) (1, 0) \nonumber \\ & = & (0, r_{1} + B) (0, 1) + (r_{2} + A, 0) (1, 0) \nonumber \\ & = & (r_{2} + A, r_{1} + B) \nonumber \\ & = & ([r_{2}]_{A}, [r_{1}]_{B}) . \end{eqnarray}\]Thus, $\phi$ is surjective.
(ii)
$A$, $B$ are ideals so that \(\{0\} \in A \cap B \neq \emptyset\). It always holds $AB \subseteq A \cap B$ by a porposition in Section 7.3. Since $A$ and $B$ are comaximal, for any $c \in A\ cap B$,
\[c = c1 = cx + cy = xc + cy \in AB .\]Thus, $A \cap B = AB$.
Suppose that the statement holds up to $k = n-1$. We show that in case of $k = n$. Let $A := A_{1}$, $B := A_{2}, \ldots A_{k}$. We only need to show that $A$ and $B$ are comaximal. By asusmpation that $A_{1}, \ldots, A_{k}$ are pair-wise comaximal, there are elements $x_{i} \in A_{1}$, $y_{i} \in A_{i}$
\[\forall i \in \{2, \ldots, k\}, \ x_{i} + y_{i} = 1 .\]Since \([x_{i}]_{A_{1}}\), \(x_{i} + y_{i} \equiv y_{i} (\mathrm{mod}\ A_{1})\). Hence
\[1 = (x_{2} + y_{2}) (x_{3} + y_{3}) \cdots (x_{k} + y_{k})\]By expanding RHS, we see that RHS is an element of \(A_{1} + (A_{2} \cdots A_{k})\).