07-03. Ring homomorphisms and quotient rings
Definiiton. ring homomorphisim
- $R$, $S$,
- ring
- $\phi: R \rightarrow S$,
$\phi$ is said to be ring homomorphism if
- (i) $\phi(a + b) = \phi(a) + \phi(b)$
- (ii) $\phi(ab) = \phi(a)\phi(b)$
Definiiton. kernel of ring homomorphisim
- $R$, $S$,
- ring
- $\phi: R \rightarrow S$,
- ring homomorphisim
The kernel of the $\phi$, denoted $\mathrm{ker}\phi$, is
\[\mathrm{ker}\phi := \{ x \in R \mid \phi(x) = 0 \} .\]Definiiton. isomorphisim
- $R$, $S$,
- ring
- $\phi: R \rightarrow S$,
- ring homomorphisim
A bijective ring homomorphisim is called an isomorphisim
Examples
Proposition 5.
- $R, S$,
- ring
- $\phi:R \rightarrow S$,
- homomorphisimo
- (1) $\mathrm{Im}\phi$ is a subring of $S$,
- (2) $\mathrm{ker}\phi$ is a subring of $R$,
- $\forall a \in R$, $b \in \mathrm{ker}\phi$, $ab \in \mathrm{ker}\phi$,
proof.
(1)
$s_{1}, s_{2} \in \mathrm{im}\phi$, then $s_{1} := \phi(r_{1}), s_{2} := \phi(s_{2})$ for some $r_{1}, r_{2} \in R$. Then
\[\begin{eqnarray} \phi(r_{1} - r_{2}) & = & s_{1} - s_{2} \in \nonumber \\ \phi(r_{1}r_{2}) & = & s_{1}s_{2} \nonumber \end{eqnarray}\]$\mathrm{im}\phi$ is closed under subtraction and multiplication. Thus, $\mathrm{im}\phi$ is subring.
(2)
If $\alpha, \beta \in \mathrm{ker}\phi$, $\phi(\alpha) = \phi(\beta) = 0$.
\[\begin{eqnarray} \phi(\alpha - \beta) & = & 0 \in \nonumber \\ \phi(\alpha\beta) & = & 0 \nonumber \end{eqnarray}\]$\mathrm{ker}\phi$ is closed under subtraction and multiplication. Thus, $\mathrm{ker}\phi$ is subring. Similary,
\[\begin{eqnarray} \forall r \in \mathbb{R}, \ \phi(r\alpha) & = & \phi(r) 0 \nonumber \\ & = & 0 \nonumber \\ \ \phi(\alpha r) & = & 0 \phi(r) \nonumber \\ & = & 0 \nonumber \end{eqnarray}\]Definition. ideal
- $R$,
- ring
- $I \subset I$,
- $r \in R$,
(1) \(rI := \{ra \mid a \in I\}\), \(Ir := \{a r \mid a \in I\}\),
(2) $I$ is said to be left ideal if
- (i) $I$ is a subring of $R$,
- (ii) $r \in R$, $rI \subseteq I$,
(2) $I$ is said to be right ideal if
- (i)
- (ii) $r \in R$, $Ir \subseteq I$,
(3) $I$ is said to be ideal if $I$ is left and right ideal.
Theorem 8. isomorphism theory
- $R$,
- ring
- $A \subseteq R$,
- subring
- $B \subseteq R$,
- ideal
(1) The second Isomorphism Theorem for Rings
\[A + B := \{ a + b \mid a \in A, \ b \in B \}\]is a subring.
$A \cap B$ is an ideal of $A$.
\[(A + B)/B \cong A/(A \cap B) .\](2) The third Isomorphism Theorem for Rings
- $I \subseteq J \subseteq R$,
- ideals
Then
$R/J$ is an ideal of $R/I$ and $(R/I)/(J/I) \cong R/J$.
(3) The fourth Isomorphism Theorem for Rings, Lattice Isomorphism Theorem for Rings
- $I \subseteq R$,
- ideal
- $\pi: R \rightarrow R/I$,
- natural surjection
Then
- $\pi$ is bijection.
- $\pi(A) = A/I$ is a subring of $R/I$.
- If $I \subset A$, $A$ is ideal if and only if $A/I$ is ideal of $R/I$.
proof.
(1)
Let $x := a + b, y := a^{\prime} + b^{\prime} \in A + B$.
\[\begin{eqnarray} x + y & = & a + b + a^{\prime} + b^{\prime} \nonumber \\ & = & (a + a^{\prime}) + (b + b^{\prime}) \nonumber \\ xy & = & aa^{\prime} + ( ab^{\prime} + ba^{\prime} + bb^{\prime} ) \in A + B \quad (\because B \text{ is a ideal}) \nonumber \end{eqnarray} .\]Let $[x]{B} := [a + b]{B} \in (A + B)/B$.
\[(A + B)\]Definition. arithmetrics of ideals
- $R$,
- commutative ring
- $I, J \subseteq R$,
- ideals
- (1) \(I + J := \{a + b \mid a \in I, b \in J\}\),
- (2) \(IJ := \{ \sum_{i} a_{i}b_{i} \mid k \in \mathbb{N}, a_{i} \in I, b_{i} \in J\}\),
- (3) For any $n \in \mathbb{N}$, $n$th power of $I$ is defined inductively
This is equivalent to
\[I^{n} = \left\{ \sum_{i = 1}^{k} a_{1}^{i} \cdots a_{n}^{i} \mid a_{j}^{i} \in I, \ k \in \mathbb{N}, \ j = 1, \ldots, n, \ i = 1, \ldots, k \right\}\]Proposition.
- (1) $I + J$ is the smallest ideal containing both $I$ and $J$.
- (2) $IJ$ is a ideal contained in $I \cap J$.
proof.
(1)
(2) By definition, $IJ$ is closed under addition.
\[\forall r \in R, \ ab \in IJ, \ r(ab) = (ra)b \in IJ .\]Thus, $IJ$ is ideal Let $ab \in IJ$. Since $J$ is (right) ideal, $a \in R$ and $b \in J$, $ab \in J$. Similarly, $ab \in I$. Hence $ab \in I \cap J$. $I \cap J$ is ideal so that $IJ \subseteq I \cap J$.