Statistical Hypothesis Small Sampling Theory
現代の統計は、以下の3つのtopicに分類できる。
- Small sampling theory
- 正規分布に対する統計
- 2,3 の議論の基礎
- 実務でも使う
- Large sampling theory
- 非正規分布に対する統計
- 実務でも割りと使う
- High order approximation/Asymptotic expansion
- 2の議論の精緻化
- 実務で使えている会社は世界に数社くらい
以下では[E.L.Lehmann]Testing Statistical Hypothesesと[吉田]数理統計学に基いて、small sampling theoryに対するhypothesis testingについてまとめている。 small sampling theoryにおけるhypothesis testingにおいて重要な結果の1つは、正規分布に対するunbiased UMP testの構成である。 ここでは、やや一般的にExponential familyに対するunbiased UMP testの構成を行う。
Formulation of hypothesis testing
Here we formulate statistical hypothesis testing and define related terminologies.
Definition1 statistical hypothesis test
- $(\mathcal{X}, \mathcal{A})$,
- measurable space
- $\Theta \subseteq \mathbb{R}^{p}$,
- parameters
- $\{P\}_{\theta \in \Theta}$,
- probability measure over $(\mathcal{X},\mathcal{A})$,
- $\alpha \in [0, 1]$,
- constant
A pair of subsets $(\Theta_{0}, \Theta_{1}) \subseteq \Theta^{2}$ is said to be hypothesis and alternatives if $\Theta_{0} \cap \Theta_{1} = \emptyset$ and $\Theta_{0} \cup \Theta_{1} = \Theta$.
A measurable function $\phi: \mathcal{X} \rightarrow [0, 1]$ is said to be test, test function or critical function. In particular, test $\phi$ is said to be non-randomized if test $\phi$ is an indicator function. Otherwise, $\phi$ is randomized test.
For test $\phi$,
\[\sup_{\theta \in \Theta_{0}} \mathrm{E}_{\theta} \left[ \phi \right]\]is said to be size of test $\phi$ for hypothesis $\Theta_{0}$.
A test $\phi$ is said to be level $\alpha$ test or test at level $\alpha$ for hypothesis $\Theta_{0}$ if
\[\forall \theta \in \Theta_{0}, \ \mathrm{E}_{\theta} \left[ \phi \right] \le \alpha .\]We denote $\Phi_{\alpha}$ by set of level $\alpha$ tests.
For test $\phi$,
\[\beta_{\phi}(\theta) := \mathrm{E}_{\theta} \left[ \phi \right]\]is said to be power function or power.
For test $\bar{\phi} \in \Phi_{\alpha}$, $\bar{\phi}$ is said to be the uniformly most powerful test at level $\alpha$ if
\[\theta \in \Theta_{1}, \ \beta_{\phi}(\theta) \le \beta_{\bar{\phi}}(\theta)\]Remark2
- There is no common or standard definition for hypothesis and alternatives. Most books define it differently.
- Power of test is a measure of goodness for the test.
Theorem3 Neyman-Peason’s fundamental lemma
- $\Theta_{0} := \{0\}$,
- $\Theta_{1} := \{1\}$,
- $P_{0}, P_{1}$
- distribution of $X$
- $\mu$
- sigma-finite measure over $(\mathcal{X}, \mathcal{A})$,
- $p_{0}, p_{1}$
- radon nikodym derivative of $P_{i}$ with respect to $\mu$
- $H = \{P_{0}\}$,
- hypothesis
- $K = \{P_{1}\}$,
- alternatives
- $\alpha \in [0, 1]$,
(1)
\[\begin{eqnarray} \exists \phi: \text{ test}, \ \exists k, \gamma \in \mathbb{R} \ \text{ s.t. } \ \mathrm{E}_{0} \left[ \phi \right] & = & \alpha \tag{chap03-03-07} \\\\ \phi(x) & = & \begin{cases} 1 & (p\_{1}(x) > kp\_{0}(x)) \\\\ \gamma & (p\_{1}(x) = kp\_{0}(x)) \\\\ 0 & (p\_{1}(x) < kp\_{0}(x)) \end{cases} \\\\ & = & 1\_{\\\{p\_{1} > kp\_{0}\\\}}(x) + \gamma 1\_{\\\{p\_{1} = kp\_{0}\\\}}(x) \quad \mu \text{-a.e. } x \tag{chap03-03-08} \end{eqnarray}\](2) If test $\phi$ satisifes (chap03-03-07) and (chap03-03-08), then $\phi$ is most powerful test at level $\alpha$.
(3) If $\alpha \in (0, 1)$ and test $\phi$ is the most powerful test at level $\alpha$, then there exists $k, \gamma \in \mathbb{R}$ such that (chap03-03-08) satisfies.
proof.
proof of (1)
For $\alpha = 0$,
\[\begin{eqnarray} F(z) & := & P_{0} \left( \left\\\{ x \in \mathcal{X} \mid p_{1}(x) \le z p_{0}(x) \right\\\} \right) \\\\ & = & \int_{\mathcal{X}} 1\_{\{\frac{p\_{1}}{p\_{0}} \le z\}}(x) p\_{0}(x) \ \mu(dx) \tag{theorem-fundamental-neyman-peason-lemma-02-def-of-cdf} \end{eqnarray}\]$F$ is cumulative distribution function, that is, $F$ satisfies following propeties:
- (a) $F(+\infty) = 1$,
- (b) $F(-\infty) = 0$,
- (c) $F$ is right continuous,
- (d) $F$ is non decreasing.
Indeed, for (a), by monoton convergence theorem, we have
\[\begin{eqnarray} \int_{\mathcal{X}} 1_{\{x \mid \frac{p_{1}(x)}{p_{0}(x)} \le z\}}(x) p_{0}(x) \ \mu(dx) & \nearrow & \int_{\mathcal{X}} p_{0}(x) \ \mu(dx) \quad (z \rightarrow \infty) \nonumber \\ & = & 1 . \nonumber \end{eqnarray}\](b) is obivous since
\[P(p_{i}(x) < 0) = 0 .\]For (c), let $z \in \mathbb{R}$ be fixed. For all sequence $\{z_{n}\}{n \in \mathbb{N}}$, $z{n} \searrow z$, we have
\[\begin{eqnarray} \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z_{n}\}}(x) p_{0}(x) \ \mu(dx) - \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) \ \mu(dx) & = & \int_{\mathcal{X}} ( 1_{\{\frac{p_{1}}{p_{0}} \le z_{n}\}}(x) - 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) ) p_{0}(x) \ \mu(dx) . \nonumber \end{eqnarray}\]By taking the limit of equation above as $n \rightarrow \infty$, it converges to 0 by Lebesgue dominated convergence theorem. Hence (c) holds. Finally we show (d). But this is obvious since integrand satisifies that
\[\forall z < z^{\prime}, \ \Rightarrow \ \forall x \in \mathcal{X}, \ 0 \le 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) < 1_{\{\frac{p_{1}}{p_{0}} \le z^{\prime}\}}(x) p_{0}(x) .\]Therefore, $F$ is cumulative distribution. Since $F$ is non decreasing and right continuous,
\[\begin{equation} 0 < \forall \alpha < 1, \ \exists k \in \mathbb{R}, \ \text{ s.t. } \ F(k-) \le 1 - \alpha \le F(k) . \tag{theorem-fundamental-neyman-peason-lemma-01} \end{equation}\]Indeed, let $\alpha \in (0, 1)$ be fixed. We denote
\[\begin{eqnarray} A & := & \\\{ x \in \mathbb{R} \mid 1 - \alpha \le F(x) \\\} \\\\ k & := & \inf A, \\\\ B & := & \\\{ x \in \mathbb{R} \mid F(x) \le 1 - \alpha \\\}, \\\\ c & := & \sup B, \end{eqnarray}\]By right-continuity,
\[\forall \{k_{n}\}, \ k_{n} \searrow k, \ \lim_{n \rightarrow \infty} F(k_{n}) = F(k) \ge 1 - \alpha .\]Then $F$ is non decreasing so that
\[\forall \\\{k\_{n}\\\}\_{n \in \mathbb{N}}, \ k\_{n} \nearrow k, \ \Rightarrow \ k\_{n} \le c .\]We can easily check this. Suppose there exists $n$ such that $c < k_{n}$. $F$ is non decreasing so that $F(c) < F(k_{n})$. If $1 - \alpha \le F(k_{n})$, $k_{n} \in A$ but this contradict to $k_{n} \le k$. In other hand, if we assume $F(k_{n}) < 1 - \alpha$, $k_{n} \in B$ so that $k_{n} \le c$. Therefore the above statement hold. By combining our observations, we have
\[\lim_{n \rightarrow \infty} F(k_{n}) \le F(c) \le 1 - \alpha \le F(k) .\]The equation (theorem-fundamental-neyman-peason-lemma-01) holds. Now we define constant $\gamma$
\[\gamma := \begin{cases} 0 & F(k) = F(k-) = 1 - \alpha \\\\ \frac{F(k) - (1 - \alpha)}{F(k) - F(k-)} & \text{otherwise} \end{cases} ,\]and test $\phi$
\[\phi(x) := 1_{\{p_{1} > k p_{0}\}}(x) + \gamma 1_{\{p_{1} = k p_{0}\}}(x) .\]Then we have
\[\begin{eqnarray} \mathrm{E}\_{0} \left[ \phi \right] & = & P\_{0}(p\_{1} > k p\_{0}) + \gamma P\_{0}(p\_{1} = k p\_{0}) \\\\ & = & 1 - F(k) + \gamma (F(k) - F(k-)) \\\\ & = & \begin{cases} 1 - (1- \alpha) & F(k) = F(k-) = 1 - \alpha \\\\ 1 - F(k) - ( F(k) - (1 - \alpha) ) & \text{otherwise} \end{cases} \\\\ & = & \alpha \end{eqnarray}\]proof of (2)
Let $\phi$ be test. There exist $k, \gamma \in \mathbb{R}$ such that $\phi$ satisfies that (chap03-03-07) and (chap03-03-08). For all test $\phi^{\prime}: \mathcal{X} \rightarrow [0, 1]$ at level $\alpha$, from (chap03-03-08),
\[(\phi - \phi^{\prime}) (p_{1} - k p_{0}) \ge 0 \quad \mu \text{-a.e.}\]Hence the integral of the equation satisfies
\[\int_{\mathcal{X}} (\phi - \phi^{\prime}) (p_{1} - k p_{0}) \ \mu(x) \ge 0\]Form the equation above,
\[\begin{eqnarray} \int\_{\mathcal{X}} (\phi - \phi^{\prime}) p\_{1} \ \mu(x) & \ge & k \int\_{\mathcal{X}} (\phi - \phi^{\prime}) p\_{0} \ \mu(x) \\\\ & = & k \mathrm{E}\_{0} \left[ \phi \right] - k \mathrm{E}\_{0} \left[ \phi^{\prime} \right] \\\\ & = & k \left( \alpha - \mathrm{E}\_{0} \left[ \phi^{\prime} \right] \right) \ge 0 \quad (\because \phi^{\prime} \text{ is test at level } \alpha) \end{eqnarray}\]Therefore
\[\mathrm{E}\_{1} \left[ \phi \right] \ge \mathrm{E}\_{1} \left[ \phi^{\prime} \right] .\]proof of (3)
Let $\phi^{\prime}$ be most powerful test at level $\alpha$. As we have already shown in (1), there exist the most powerful test $\phi$ at level $\alpha$. By definition of $\phi$ and (2),
\[\int_{\mathcal{X}} (\phi - \phi^{\prime}) (p_{1} - k p_{2}) \ \mu(x) \ge 0 .\]In other hand, $\phi^{\prime}$ is most powerful test at level $\alpha$ so that we have
\[\mathrm{E}\_{1} \left[ \phi^{\prime} \right] \ge \mathrm{E}\_{1} \left[ \phi \right] .\]Example4
- $n \in \mathbb{N}$,
- $\Theta := [0, 1]$,
- $\mathcal{X} := {0, 1, \ldots, n}$,
- $\mu: \mathcal{X} \rightarrow [0, 1]$
- countable measure
- $P_{\theta}:= B(n, \theta)$
- binominal distribution
- $\theta_{i} \in \Theta$,
- $0 < \theta_{0} < \theta_{1} < 1$,
We consinder hypothesis test:
\[\Theta_{H} := \{\theta_{0}\}, \ \Theta_{K} := \{\theta_{0}\} .\]We have
\[\log \frac{ p_{\theta_{0}}(x) }{ p_{\theta_{1}}(x) } = ax + n \log \frac{ 1 - \theta_{1} }{ 1 - \theta_{0} }\]where
\[a := \log \frac{ \theta_{1}/(1 - \theta_{1}) }{ \theta_{0}/(1 - \theta_{0}) } > 0 .\]Now let
\[\phi(x) := \begin{cases} 1 & x > x_{0} \\ \gamma & x = x_{0} \\ 0 & x < x_{0} \end{cases}\]where $\gamma$ and $x_{0}$ are taken to satisfy $\beta_{\phi}(\theta_{0}) = \alpha$. $\phi$ is the unimofrmly most powerful test for hypothesis $\Theta_{H$}$ and alternatives $\Theta_{K}$.
Monotone likehood ratio and composite hypothesis test
- $\Theta \subseteq \mathbb{R}$,
- $(\mathcal{X}, \mathcal{A})$,
- measurable space
- $\mathcal{P} := \{P_{\theta} \}_{\theta \in \Theta}$,
- family of probability distribution over $(\mathcal{X}, \mathcal{A})$
- $\mu: \mathcal{X} \rightarrow [0, \infty)$
- $\sigma$ finite measure on $(\mathcal{X}, \mathcal{A})$
Assumptions
\[\forall \theta, \ \mu \gg P_{\theta} .\]Definition monotone likelihood ratio (MLR)
- $T: \mathcal{X} \rightarrow \mathbb{R}_{\ge 0}$
- measurable function
$\mathcal{P}$ is said to be monotone likelihood ration with respect to $T$ if
\[\begin{eqnarray} \forall \theta\_{1}, \theta\_{2} \in \Theta, \ \theta\_{1} < \theta\_{2}, \ \exists H\_{\theta\_{1}, \theta\_{2}}:T(\mathcal{X}) \rightarrow [0, \infty] \text{ s.t. } & & H \text{ is non-decreasing}, \\\\ & & \forall x \in \mathcal{X}\_{\theta\_{1}, \theta\_{2}} , \ \frac{p\_{\theta\_{2}}}{p\_{\theta\_{1}}}(x) = H\_{\theta\_{1}, \theta\_{2}}(T(x)) \end{eqnarray}\]We assume $c/0 = \infty$ for $c > 0$.
Example5
- $\Theta \subseteq \mathbb{R}$,
- $\mathcal{P} := \{P_{\theta} \}_{\theta \in \Theta}$,
- one prameter exponential family
That is, there exist $g: \mathcal{X} \rightarrow \mathbb{R}_{\ge 0}$, $a: \Theta \rightarrow \mathbb{R}$, $\psi: \Theta \rightarrow \mathbb{R}$ such that
\[p_{\theta}(x) := g(x) \exp \left( a(\theta) T(x) - \psi(\theta) \right) \ (x \in \mathcal{X}) .\]If $a$ is non-decreasing function, then $\mathcal{P}$ is monotone likelihood ration with respect to $T$.
Theorem6 UMP test for MLR
- $\theta_{0} \in \Theta \subseteq \mathbb{R}$,
- given
- $\mathcal{P} := \{P_{\theta}\}_{\theta \in \Theta}$,
- monotone likelihood ratio in statistics $T$
- $\{\theta \mid \theta > \theta_{0}\} \neq \emptyset$,
- $c \in \mathbb{R}$,
- $\gamma \in [0, 1]$,
(a) Let
\[\begin{eqnarray} \phi_{0}(x) & := & \begin{cases} 1 & (T(x) > c) \\\\ \gamma & (T(x) = c) \\\\ 0 & (T(x) < c) \end{cases} \\\\ & = & 1_{\\\{x \mid T(x) >c\\\}}(x) + \gamma 1_{\\\{x \mid T(x) =c\\\}}(x) \tag{chap03-03-22-test} \end{eqnarray}\]If $\mathrm{E}_{\theta_{0}} \left[ \phi_{0} \right] > 0$, then $\phi_{0}$ is the most powerful test at level $\alpha^{\prime} := \mathrm{E}_{\theta_{0}}[\phi_{0}]$ for hypothesis test
\[\begin{equation} \Theta\_{H} := \\\{\_\theta \mid \theta \le \theta\_{0}\\\}, \ \Theta\_{K} := \\\{\_\theta \mid \theta > \theta\_{0}\\\}, \tag{chap03-03-23-hypothesis-test} \end{equation}\](b) For $\alpha \in (0, 1)$,
\[\exists c \in \mathbb{R}, \ \gamma \in [0, 1], \ \text{ s.t. } \ \phi_{0}: \ \text{ (chap03-03-22-test)} \text{ is the most powerful test at level } \alpha\]proof
(a)
Let $\Phi(\Theta_{H}, \Theta_{K}, \alpha^{\prime})$ be a set of tests for $\Theta_{H}$ and $\Theta_{K}$ at level $\alpha^{\prime}$. We need to show
\[\begin{equation} \forall \phi \in \Phi(\Theta\_{H}, \Theta\_{K}, \alpha^{\prime}), \ \theta\_{1} \in \Theta\_{K}, \ \mathrm{E}\_{\theta\_{1}}[\phi\_{0}] \ge \mathrm{E}\_{\theta\_{1}}[\phi] \tag{chap03-monotone-likehood-ratio-ump-test} \end{equation}\]and
\[\begin{equation} \sup\_{\theta \in \Theta\_{H}} \mathrm{E}\_{\theta} \left[ \phi\_{0} \right] \le \alpha^{\prime} \tag{chap03-monotone-likehood-ratio-level-alpha-test} \end{equation} .\]We first show (chap03-monotone-likehood-ratio-ump-test). Let $\theta_{1} \in \Theta_{K}$ be fixed and
\[k := \inf \left\\\{ \frac{p\_{\theta\_{1}}(x)}{p\_{\theta\_{0}}(x)} \mid x \in \mathcal{X}\_{\theta\_{1}, \theta\_{2}}, \ T(x) \ge c \right\\\} .\]Then $k \in \mathbb{R}_{\ge 0}$. Indeed,
\[\begin{eqnarray} \mu( \\\{ x \in \mathcal{X}\_{\theta\_{0}, \theta\_{1}} \mid p\_{\theta\_{0}}(x) \neq 0, \ T(x) \ge c \\\} ) & = & \mu( \\\{ x \in \mathcal{X}\_{\theta\_{0}, \theta\_{1}} \mid T(x) \ge c \\\} ) \\\\ & > & 0 \end{eqnarray}\]since
\[\int\_{\mathcal{X}\_{\theta\_{0}, \theta\_{1}}} 1\_{\\\{T \ge c\\\}}(x) p\_{\theta\_{0}}(x) \ \mu(dx) = P\_{\theta\_{0}}(T \ge c) \ge \mathrm{E}\_{\theta\_{0}}[\phi\_{0}] > 0 .\]Morever $p_{\theta_{1}} < \infty \ \mu \text{-a.e.}$ by definition. Therefore $k < \infty$.
Now we show that
\[\begin{eqnarray} x \in \mathcal{X}\_{\theta\_{0}, \theta\_{1}}, \ p\_{\theta\_{1}}(x) > kp\_{\theta\_{0}}(x), & \Rightarrow & \phi\_{0}(x) = 1 \nonumber \\ x \in \mathcal{X}\_{\theta\_{0}, \theta\_{1}}, \ p\_{\theta\_{1}}(x) < kp\_{\theta\_{0}}(x), & \Rightarrow & \phi\_{0}(x) = 0 \tag{chap03-03-24} . \end{eqnarray}\]Let $x \in \mathcal{X}_{\theta_{0}, \theta_{1}}$ be fixed. Suppose that $p_{\theta_{1}}(x)/p_{\theta_{0}}(x) > k$. To show $\phi(x) = 1$, it is sufficient to see $T(x) > c$. By definition of $k$, there exists $x^{\prime} \in \mathcal{X}_{\theta_{0}, \theta_{1}}$ such that
\[k \le \frac{p_{\theta_{1}}(x^{\prime})}{p_{\theta_{0}}(x^{\prime})} < \frac{p_{\theta_{1}}(x)}{p_{\theta_{0}}(x)}, \ T(x^{\prime}) \ge c .\]If we assume $T(x) \le c$, by definiiton of monotone likelihood ratio,
\[\begin{eqnarray} \frac{ p_{\theta_{1}}(x) }{ p_{\theta_{0}}(x) } & = & H_{\theta_{0}, \theta_{1}}(T(x)) \\\\ & \le & H_{\theta_{0}, \theta_{1}}(c) \\\\ & \le & H(T(x^{\prime})) \\\\ & \le & \frac{ p_{\theta_{1}}(x^{\prime}) }{ p_{\theta_{0}}(x^{\prime}) } \end{eqnarray}\]This is contradiction so that $\phi(x) = 1$. Suppose that $p_{\theta_{1}}(x)/p_{\theta_{0}}(x) < k$. If $T(x) \ge c$, $k$ cannot be infimum. Hence $T(x) < c$.
From theorem and (chap03-03-24), test $\phi_{0}$ is the most powerful test of hypothesis test $\Theta_{H}^{\prime} := \{\theta_{0}\}$ and $\Theta_{K}^{\prime} := \{\theta_{1}\}$ at level $\alpha^{\prime} := \mathrm{E}_{\theta_{0}}[\phi_{0}]$.
Let $\phi$ be test for $\Theta_{H}$ and $\Theta_{K}$ at level $\alpha^{\prime}$. Then $\phi$ is also test for $\Theta_{H}^{\prime}$ and $\Theta_{K}^{\prime}$ at level $\alpha^{\prime}$. Hence
\[\begin{equation} \mathrm{E}\_{\theta\_{1}} \left[ \phi\_{0} \right] \ge \mathrm{E}\_{\theta\_{1}} \left[ \phi \right] \tag{chap03-03-26} \end{equation} .\]$\theta_{1}$ is arbitrary fixed so that (chap03-03-26) holds for all $\theta_{1} \in \Theta_{K}$.
Now we show that (chap03-monotone-likehood-ratio-level-alpha-test). It suffices to show that
\[\forall \theta\_{2} < \theta\_{0}, \ \mathrm{E}\_{\theta\_{2}} \left[ \phi\_{0} \right] \le \alpha^{\prime}\]With out loss of generality, $\mathrm{E}_{\theta_{2}}[\phi_{0}] > 0$. Indeed, if $\mathrm{E}_{\theta_{2}}[\phi_{0}] = 0$, the equation always holds since $0 \le \alpha^{\prime}$. Let $\theta_{2} < \theta_{0}$ be fixed. From discussion above, $\phi_{0}$ is the most powerful test at level $\alpha^{\prime\prime} := \mathrm{E}_{\theta_{2}}[\phi_{0}]$ for hypothesis $\Theta_{H}^{\prime\prime} := {\theta_{2}}$ and alternatives $\Theta_{K}^{\prime\prime} := {\theta_{0} }$ by substituting $\theta_{2}$ for $\theta_{0}$ and $\theta_{0}$ for $\theta_{1}$, respectively. Since $\alpha^{\prime\prime}$ is one of tests at level $\alpha^{\prime\prime}$ for hypothesis $\Theta_{H}^{\prime\prime}$ and alternatives $\Theta_{K}^{\prime\prime}$, we have
\[\begin{eqnarray} & & \mathrm{E}\_{\theta\_{0}}[\alpha^{\prime\prime}] \le \mathrm{E}\_{\theta\_{0}}[\phi\_{0}] \\\\ & \Leftrightarrow & \alpha^{\prime\prime} \le \mathrm{E}\_{\theta\_{0}}[\phi\_{0}] \\\\ & \Leftrightarrow & \mathrm{E}\_{\theta\_{2}}[\phi\_{0}] \le \mathrm{E}\_{\theta\_{0}}[\phi\_{0}] = \alpha^{\prime} \end{eqnarray}\](b)
Let
\[F(u) := P_{\theta_{0}}(T \le u) .\]Then there exists $c \in \mathbb{R}$ such that
\[F(c-) \le 1 - \alpha \le F(c) .\]Now, let
\[\gamma := \begin{cases} 0 & F(c) - F(c-) = 0 \\\\ \frac{ (\alpha - 1 + F(c)) }{ F(c) - F(c-) } & F(c) - F(c-) > 0 \end{cases} .\]Then $\phi_{0}$ defined in (chap03-03-22-test) is the most powerful test at level $\alpha := \mathrm{E}_{\theta_{0}}[\phi_{0}]$ for hypothesis $\Theta_{H}$ and alternative $\Theta_{K}$ by (a).
Generalized Neyman Peason’s lemma
Theorem7 Generalized neyman pearson fundamental lemma
- $(\mathcal{X}, \mathcal{A})$,
- measurable sp.
- $\mu: \Omega \rightarrow [0, \infty)$,
- $\sigma$-finite measure over $(\mathcal{X}, \mathcal{A})$
- $\Phi := \{\phi \mid \phi: \mathcal{X} \rightarrow [0, 1]: \text{ measurable function}\}$,
- $f_{1}, \ldots, f_{m}, g \in L^{1}(\mathcal{X}, \mathcal{A}, \mu)$,
Then
(a) Let $\phi_{0} \in \Phi_{c}$. If there eixist $k_{1}, \ldots, k_{m} \in \mathbb{R}$ such that
\[\begin{equation} \phi\_{0}(x) = \begin{cases} 1 & (g(x) > \sum\_{i=1}^{m}k\_{i}f\_{i}(x)) \\\\ 0 & (g(x) < \sum\_{i=1}^{m}k\_{i}f\_{i}(x)) \end{cases} \ \mu \text{-a.e.} \tag{chap03-03-27-test} , \end{equation}\]then
\[\int\_{\mathcal{X}} \phi\_{0}(x) g(x) \ \mu(dx) = \sup \left\\\{ \int\_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) \mid \phi \in \Phi\_{c} \right\\\} .\](b) Let $\phi_{0} \in \Phi_{c}$. If there exists $k_{1}, \ldots, k_{m} \in \mathbb{R}_{\ge 0}$ such that (chap03-03-27-test) is satisfied, then
\[\int\_{\mathcal{X}} \phi\_{0}(x) g(x) \ \mu(dx) = \sup \left\\\{ \int\_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) \mid \phi \in \Phi, \ \int\_{\mathcal{X}} \phi(x) f\_{i}(x) \ \mu(dx) \le c\_{i} (i = 1, \ldots, m) \right\\\}\]proof
(a)
Since $\phi_{0} \in \Phi_{c}$,
\[\begin{eqnarray} \int\_{\mathcal{X}} \phi\_{0}(x) g(x) \ \mu(dx) - \sum\_{i=1}^{m} k\_{i}c\_{i} & = & \int\_{\mathcal{X}} \phi\_{0}(x) g(x) \ \mu(dx) - \int\_{\mathcal{X}} \sum\_{j=1} k\_{i}f\_{i}(x) \ \mu(dx) \\\\ & = & \int\_{\mathcal{X}} \phi\_{0}(x) \left( g(x) - \sum\_{j=1} k\_{i}f\_{i}(x) \right) \ \mu(dx) \end{eqnarray}\]On the other hand, for all $\phi \in \Phi_{c}$
\[\begin{eqnarray} \int\_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum\_{i=1}^{m} k\_{i}c\_{i} & = & \int\_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \int\_{\mathcal{X}} \sum\_{j=1} k\_{i}f\_{i}(x) \ \mu(dx) \\\\ & = & \int\_{\mathcal{X}} \phi(x) \left( g(x) - \sum\_{j=1} k\_{i}f\_{i}(x) \right) \ \mu(dx) . \end{eqnarray}\]Therefore,
\[\begin{eqnarray} \forall \phi \in \Phi_{c}, \ \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) + \sum_{i=1}^{m} k_{i}c_{i} - \sum_{i=1}^{m} k_{i}c_{i} \nonumber \\ & = & \int_{\mathcal{X}} (\phi_{0}(x) - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & = & \int_{g(x) > \sum_{j=1}^{m}k_{i}f_{i}(x)} (1 - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\](b)
For simplicity, let
\[B := \left\\\{ \phi \in \Phi \mid \int\_{\mathcal{X}} \phi(x)f\_{i}(x) \ \mu(dx), \le c\_{i} \ (i = 1, \ldots, m) \right\\\} .\]Since $\phi_{0} \in \Phi_{c}$, we have $\phi \in B$. For all $\phi \in B$,
\[\begin{eqnarray} \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & \le & \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) . \nonumber \end{eqnarray}\]Therefore,
\[\begin{eqnarray} \forall \phi \in B, \ \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} - \left( \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} \right) \\\\ & \ge & \int_{\mathcal{X}} (\phi_{0}(x) - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \\\\ & = & \int_{g(x) > \sum_{j=1}^{m}k_{i}f_{i}(x)} (1 - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \\\\ & \ge & 0 . \end{eqnarray}\]Unbiased test
Definition8 Unbiased test
- $(\mathcal{X}, \mathcal{A})$,
- measurable sp.
- $\Theta = \Theta_{0} \sqcup \Theta_{1}$,
- parameter sp.
- $\Theta_{0} \neq \emptyset$,
- Hypothesis
- $\Theta_{1} \neq \emptyset$,
- Alternatives
- $\alpha \in [0, 1]$,
- $\phi: \mathcal{X} \rightarrow [0, 1]$
- test at level$\alpha$
$\phi$ is said to be unibiased if
\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi \right] \ge \alpha .\]That is, power of the test $\phi$ is uniformly higher or equal to power of a trivial test $\phi^{\prime} \equiv \alpha$ at level $\alpha$.
We denote $\Phi_{\alpha}^{\mu}$ by a set of all unibiased test at level $\alpha$.
Remark
A trival test $\phi^{\prime} \equiv \alpha$ at level $\alpha$ is interpreted as the test is accepted at random with the probability $\alpha$. An unbiased test at level $\alpha$ means that the unbiased test is not worse than at random.
Definition9
- $\Theta^{\prime} \subset \Theta$,
- $\phi$
- test
$\phi$ is said to be similar to $\Theta^{\prime}$ if
\[\exists c \in \mathbb{R} \text{ s.t. } \forall \theta \in \Theta^{\prime}, \ c = \mathrm{E}_{\theta} \left[ \phi \right] .\]Proposition10
- $\Theta$,
- topological space
- $\Theta_{i} \subseteq \Theta \ (i = 0, 1)$,
- disjoint set
- $(\Theta_{i})^{b} \ (i = 0, 1)$,
- boundary of set $\Theta_{i}$,
- $\Theta^{\prime} := (\Theta_{0})^{b} \cap (\Theta_{1})^{b} \neq \emptyset$,
- $\phi: \mathcal{X} \rightarrow [0, 1]$,
- unbiased test for Hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$,
- $\beta_{\phi}: \Theta \rightarrow [0, 1]$,
- continuous
Then $\phi$ is similar to $\Theta^{\prime}$.
proof
Let $\theta \in \Theta^{\prime}$ and $\epsilon > 0$ be fixed. Since $\beta_{\phi}$ is continuous,
\[\exists \theta\_{0} \in \Theta\_{0}, \ \exists \theta\_{1} \in \Theta\_{1}, \ \text{ s.t. } \ | \mathrm{E}\_{\theta\_{i}} \left[ \phi \right] - \mathrm{E}\_{\theta^{\prime}} \left[ \phi \right] | \le \epsilon \ (i = 0, 1)\]$\phi$ is unbiased,
\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi \right] \ge \alpha .\]Then
\[\begin{eqnarray} \left| \mathrm{E}\_{\theta^{\prime}} \left[ \phi \right] \right| & \le & \left| \mathrm{E}\_{\theta^{\prime}} \left[ \phi \right] - \mathrm{E}\_{\theta\_{0}} \left[ \phi \right] \right| + \left| \mathrm{E}\_{\theta\_{0}} \left[ \phi \right] \right| \\\\ & \le & \epsilon + \alpha \end{eqnarray}\] \[\begin{eqnarray} \left| \mathrm{E}\_{\theta^{\prime}} \left[ \phi \right] \right| & \ge & - \left| \mathrm{E}\_{\theta^{\prime}} \left[ \phi \right] - \mathrm{E}\_{\theta\_{1}} \left[ \phi \right] \right| + \left| \mathrm{E}\_{\theta\_{1}} \left[ \phi \right] \right| \\\\ & \ge & - \epsilon + \alpha \end{eqnarray}\]Since $\epsilon$ is arbitrary, $\beta_{\phi}(\theta^{\prime}) = \alpha$.
Proposition11
- $\Theta^{\prime} \neq \emptyset \subset \Theta$
- $\phi_{0} \in \Phi_{\alpha}^{\prime}$,
If $\phi_{0}$ satisfies
\[\begin{eqnarray} \forall \theta \in \Theta\_{0}, \ \forall \phi \in \Phi\_{\alpha}^{\prime}, \ \mathrm{E}\_{\theta} \left[ \phi\_{0} \right] & \le & \mathrm{E}\_{\theta} \left[ \phi \right] \\\\ \forall \theta \in \Theta\_{1}, \ \forall \phi \in \Phi\_{\alpha}^{\prime}, \ \mathrm{E}\_{\theta} \left[ \phi\_{0} \right] & \ge & \mathrm{E}\_{\theta} \left[ \phi \right] \end{eqnarray}\]then, $\phi_{0}$ is a unbiased test at level $\alpha$ for hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$.
proof
Since $\phi \equiv \alpha \in \Phi_{\alpha}^{\prime}$ and assumptions of $\phi_{0}$, we obtain
\[\forall \theta \in \Theta\_{0}, \ \mathrm{E}\_{\theta} \left[ \phi\_{0} \right] \le \alpha .\]Hence $\phi_{0}$ is test at level $\alpha$. Similarly, we obtain
\[\forall \theta \in \Theta\_{1}, \ \mathrm{E}\_{\theta} \left[ \phi\_{0} \right] \ge \alpha .\]Therefore $\phi_{0}$ is unbiased test.
Remark12
From both proposition, we can find an unbiased test by finding the best test only in a set of similar tests.
- $m \le 2$,
- $\Theta \subseteq \mathbb{R}^{m}$,
- open interval
- $\{P_{\theta}\}_{\theta \in \Theta}$,
- exponential family
Theorem13 unbiased UMP
- $b \in \mathbb{R}$,
- given
- $\Theta_{0} := \{(b, \theta^{*}) \mid \theta \in \Theta\}$,
- $\Theta_{1} := \{\theta \mid \theta_{1} \neq b \in \Theta\}$,
- $0 < \alpha < 1$,
For test for hypothesis $\Theta_{0}$ and alternatiev $\Theta_{1}$, there exists uniformly most powerful test at level level $\alpha$ such that
\[\phi\_{0}(x) = \begin{cases} 1 & (T\_{1}(x) < u\_{1}(T^{\*}(x)) \lor T\_{1}(x) > u\_{2}(T^{\*}(x))) \\\\ \gamma\_{1}(T^{\*}(x)) & T\_{1}(x) = u\_{1}(T^{\*}(x)) \\\\ \gamma\_{2}(T^{\*}(x)) & T\_{1}(x) = u\_{2}(T^{\*}(x)) \\\\ 0 & u\_{1}(T^{\*}(x)) < T\_{1}(x) < u\_{2}(T^{\*}(x)) \end{cases}\]where
- $\gamma_{i}: \mathbb{R}^{m-1} \rightarrow \mathbb{R} \ (i = 1, 2)$,
- $\mathcal{B}(\mathbb{R}^{m-1})$ measurable function
- $u_{i}: \mathbb{R}^{m-1} \rightarrow \mathbb{R} \ (i = 1, 2)$,
- $\mathcal{B}(\mathbb{R}^{m-1})$ measurable function
proof
Since $\Theta$ is an open interval, $(b , \theta^{*})$ is an interior point for all $\theta \in \Theta$. By proposition 3.31, any unbiased test at level $\alpha$ is similar to $\Theta_{0}$:
\[\begin{equation} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] = \alpha \ (\forall \theta \in \Theta) \tag{chap03-03-33} . \end{equation}\]$\{P_{(b, \theta{*})}\}_{\theta^{*} \in \Theta^{*}}$ is an exponential family.
By theorem in appendix, $T^{*}$ is sufficient to ${P_{(b, \theta^{*})}}_{\theta^{*} \in \Theta^{*}}$. Moreover, since the inner of $\Theta$ is not empty, $T^{*}$ is complete with respect to ${P_{(b, \theta^{*})}}_{\theta^{*} \in \Theta^{*}}$ by theorem 3.18. Then follwoing equation holds
\[\begin{equation} \forall \theta^{\*} \in \Theta^{\*}, \ \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi \mid T^{\*} = \cdot \right] = \alpha \quad P\_{(b, \theta^{\*})}^{T^{\*}} \text{-a.s.} \tag{chap03-theorem-03-33-equation-for-03-34} \end{equation}\]Indeed,
\[\begin{eqnarray} \forall \theta \in \Theta, \ \int\_{\mathbb{R}^{m-1}} \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi \mid T^{\*} = t^{\*} \right] \ P\_{(b, \theta^{\*})}^{T^{\*}}(d t^{\*}) & = & \int\_{(T^{\*})^{-1}(\mathbb{R}^{m-1})} \phi(x) \ P\_{(b, \theta^{\*})}(dx) \\\\ & = & \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi \right] \\\\ & = & \alpha \end{eqnarray}\]Then by completeness of $T^{*}$ with respect to $\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}$, we obtain the equation (chap03-theorem-03-33-equation-for-03-34). Now we show
\[\begin{eqnarray} \forall \theta \in \Theta, \ \mathrm{E}\_{(b, \theta^{\*})} \left[ \left. \phi \right| T^{\*} \right] = \alpha \quad P\_{(b, \theta^{\*})} \text{-a.s.} \tag{chap03-03-34} \end{eqnarray}\]By using (chap03-theorem-03-33-equation-for-03-34) and the definition of conditional expectation, we have
\[\begin{eqnarray} \forall \theta \in \Theta, \ \forall (T^{\*})^{-1}(B) \in \sigma(T^{\*}), \ \int\_{(T^{\*})^{-1}(B)} \mathrm{E}\_{(b, \theta^{\*})} \left\[ \phi \mid T^{\*} \right\](x) \ P\_{(b, \theta^{\*})}(dx) & = & \int\_{(T^{\*})^{-1}(B)} \phi(x) \ P\_{(b, \theta^{\*})}(dx) \\\\ & = & \int\_{B} \mathrm{E} \left[ \left. \phi \right| T^{\*} = t \right] \ P\_{(b, \theta^{\*})}^{T^{\*}}(dt) \\\\ & = & \int\_{B} \alpha \ P\_{(b, \theta^{\*})}^{T^{\*}}(dt) \\\\ & = & \int\_{(T^{\*})^{-1}(B)} \alpha \ P\_{(b, \theta^{\*})}(dx) \end{eqnarray}\]Then by the definition of conditional expectation, we obtain (chap03-03-34).
By proposition 3.17, $\beta_{\phi}(\theta)$ is differentialble with respect to $\theta_{1}$.
\[\begin{eqnarray} \frac{\partial}{\partial \theta\_{1}} \mathrm{E}\_{\theta} \left[ \phi \right] & = & \frac{\partial}{\partial \theta\_{1}} \int\_{\mathcal{X}} \phi(x) \exp \left( \sum\_{i=1}^{m} \theta\_{i}T\_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \\\\ & = & \int\_{\mathcal{X}} \phi(x) \left( T\_{1}(x) - \frac{\partial}{\partial \theta\_{1}} \psi(\theta) \right) \exp \left( \sum\_{i=1}^{m} \theta\_{i}T\_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \\\\ & = & \int\_{\mathcal{X}} \phi(x) T\_{1}(x) \exp \left( \sum\_{i=1}^{m} \theta\_{i}T\_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) - \int\_{\mathcal{X}} \phi(x) \frac{\partial}{\partial \theta\_{1}} \psi(\theta) \exp \left( \sum\_{i=1}^{m} \theta\_{i}T\_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \\\\ & = & \mathrm{E}\_{(\theta\_{1}, \theta^{\*})} \left[ \phi T\_{1} \right] - \mathrm{E}\_{(\theta\_{1}, \theta^{\*})} \left[ \phi \frac{\partial}{\partial \theta\_{1}} \psi(\theta) \right] . \end{eqnarray}\]$\phi$ is level $\alpha$ unbiased test so that we have
\[\begin{eqnarray} \forall \theta \in \Theta\_{0}, \ \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi \right] & \le & \alpha \quad (\because \text{ level } \alpha) \\\\ \forall \theta \in \Theta\_{1}, \ \mathrm{E}\_{(\theta\_{1}, \theta^{\*})} \left[ \phi \right] & \ge & \alpha \quad (\because \text{ unbiased}) . \end{eqnarray}\]Hence $\beta_{\phi}((\theta_{1}, \theta^{*}))$ achieves the minimum at $\theta = b$ as a function of $\theta_{1}$. From above observations,
\[\begin{eqnarray} & & \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi T\_{1} \right] = \frac{\partial}{\partial \theta\_{1}} \psi(b, \theta^{\*}) \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi \right] \\\\ & \Leftrightarrow & \mathrm{E}\_{(b, \theta^{\*})} \left[ \phi T\_{1} \right] = \frac{\partial}{\partial \theta\_{1}} \psi(b, \theta^{\*}) \alpha \quad (\because \text{ (chap03-03-33)}) . \end{eqnarray}\]Since $\phi$ is arbitrary unbiased test at level $\alpha$, we put $\phi \equiv \alpha$.
\[\begin{eqnarray} & & \alpha \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1} \right] = \frac{\partial}{\partial \theta\_{1}} \psi(b, \theta^{\*}) \alpha \\\\ & \Leftrightarrow & \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1} \right] = \frac{\partial}{\partial \theta\_{1}} \psi(b, \theta^{\*}) . \end{eqnarray}\]Then for all level $\alpha$ unbiased test $\phi$ we obtain
\[\mathrm{E}\_{(b, \theta^{\*})} \left[ \phi T\_{1} \right] = \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1} \right] \alpha .\]With the same way discussed in (chap03-03-34), we have
\[\begin{equation} \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1}\phi \mid T^{\*} = t \right] = \alpha \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1} \mid T^{\*} = t \right] \quad P\_{(b, \theta^{\*})}^{T^{\*}} \text{-a.s.} \tag{chap03-theorem-03-33-equation-for-03-35} \end{equation}\]Indeed,
\[\begin{eqnarray} \forall \theta \in \Theta, \ \int\_{\mathbb{R}^{m-1}} \mathrm{E}\_{(b, \theta^{\*})} \left[ \left. T\_{1}\phi \right| T^{\*} = t \right] \ P\_{(b, \theta^{\*})}^{T^{\*}}(dt) & = & \int\_{(T^{\*})^{-1}(\mathbb{R}^{m-1})} T\_{1}(x)\phi(x) \ P\_{(b, \theta^{\*})}(dt) \\\\ & = & \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1} \right] \alpha . \end{eqnarray}\]Since $T^{*}$ is completewith respect to $\{P_{(b, \theta^{*})}\}_{\theta \in \Theta^{*}}$, we obtain (chap03-theorem-03-33-equation-for-03-35) Now we show
\[\begin{equation} \forall \theta \in \Theta, \ \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1}\phi \mid T^{\*} \right] = \alpha \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1} \mid T^{\*} \right] \quad P\_{(b, \theta^{\*})} \text{-a.s.} \tag{chap03-03-35} \end{equation}\]Indeed,
\[\begin{eqnarray} \forall \theta \in \Theta, \ \forall (T^{\*})^{-1}(B) \in \sigma(T^{\*}), \ \int\_{(T^{\*})^{-1}(B)} \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1}\phi \mid T^{\*} \right] \ P\_{(b, \theta^{\*})}(d x) & = & \int\_{(T^{\*})^{-1}(B)} T\_{1}\phi \ P\_{(b, \theta^{\*})}(d x) \\\\ & = & \int\_{B} \mathrm{E}\_{(b, \theta^{\*})} \left[ T\_{1}\phi \mid T^{\*} = t \right] \ P\_{(b, \theta^{\*})}^{T^{\*}}(d t) \\\\ & = & \int\_{B} \alpha \mathrm{E}\_{(b, \theta^{\*}} \left[ T\_{1} \right] \ P\_{(b, \theta^{\*})}^{T^{\*}}(d t) \\\\ & = & \int\_{(T^{\*})^{-1}(B)} \alpha \mathrm{E}\_{(b, \theta^{\*}} \left[ T\_{1} \right] \ P\_{(b, \theta^{\*})}(d x) \end{eqnarray}\]Then by the definition of conditional expectation, we obtain (chap03-03-35).
Let $\vartheta_{0} := (b, b^{*}) \in \Theta_{0}$, $\vartheta_{1} := (\theta_{1}, \theta^{*}) \in \Theta_{1}$ and $t^{*} \in \mathbb{R}^{m - 1}$ be fixed. We denote
\[\begin{eqnarray} \Phi & := & \left\\\{ f: \mathbb{R}^{m} \rightarrow [0, 1] \mid f: \text{ measurable} \right\\\} \\\\ \int\_{\mathbb{R}} f(t\_{1}, t^{\*}) \ P\_{(b, b^{\*})}(t^{\*}, dt) & = & \alpha \tag{chap03-theorem-03-33-condition-01} \\\\ \int\_{\mathbb{R}} t f(t\_{1}, t^{\*}) \ P\_{(b, b^{\*})}(t^{\*}, dt) & = & \int\_{\mathbb{R}} \alpha t \ P\_{(b, b^{\*})}(t^{\*}, dt) \tag{chap03-theorem-03-33-condition-02} \\\\ \Phi\_{\alpha}^{\vartheta\_{0} \vartheta\_{1}, t^{\*}} & := & \left\\\{ f \in \Phi \mid f: \text{satisfies (chap03-theorem-03-33-condition-01) and (chap03-theorem-03-33-condition-02)} \right\\\} \tag{chap03-theorem-03-33-set-of-functions} \end{eqnarray}\]We can reduce problem to find $\bar{f} \in \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}}$ such that
\[\begin{eqnarray} \forall f \in \Phi\_{\alpha}^{\vartheta\_{0} \vartheta\_{1}, t^{\*}}, \ \int\_{\mathbb{R}} f(t\_{1}, t^{\*}) \ P\_{\vartheta\_{1}}(t^{\*}, dt) & \le & \int\_{\mathbb{R}} \bar{f}(t\_{1}, t^{\*}) \ P\_{\vartheta\_{1}}(t^{\*}, dt) . \tag{chap03-theorem-03-33-ump-condition} \end{eqnarray}\]Indeed, suppose that there exists such $\bar{f}$. Since the above equation holds for all $\vartheta_{1} \in \Theta_{1}$ and $t^{*} \in \mathbb{R}^{m-1}$, we have
\[\begin{eqnarray} & & \int\_{\mathbb{R}^{m-1}} \int\_{\mathbb{R}} f(t\_{1}, t^{\*}) \ P\_{\theta}(t^{\*}, dt) \ P\_{\theta}^{T^{\*}}(d t^{\*}) & \le & \int\_{\mathbb{R}^{m-1}} \int\_{\mathbb{R}} \bar{f}(t\_{1}, t^{\*}) \ P\_{\theta}(t^{\*}, dt) \ P\_{\theta}^{T^{\*}}(d t^{\*}) \\\\ & \Leftrightarrow & \int\_{\mathbb{R}^{m}} f(t) \ P\_{\theta}^{T}(d t) & \le & \int\_{\mathbb{R}^{m}} \bar{f}(t) \ P\_{\theta}^{T}(d t) \\\\ & \Leftrightarrow & \int\_{\mathbb{R}^{m}} f(T(x)) \ P\_{\theta}(d x) & \le & \int\_{\mathbb{R}^{m}} \bar{f}(T(x)) \ P\_{\theta}(d x) . \end{eqnarray}\]Hence $\bar{f} \circ T$ is the UMP test. Moreover, Since $f \equiv \alpha \in \Phi_{\alpha}^{\vartheta_{0}\vartheta_{1},t^{*}}$, $\bar{f} \circ T$ is unbiased test. By (chap03-theorem-03-33-condition-02), we have
\[\begin{eqnarray} & & \int\_{\mathbb{R}^{m}} \bar{f}(T(x)) \ P\_{(b, b^{\*})}(d x) & \le & \alpha . \end{eqnarray}\]Hence $\bar{f} \circ T$ is unbiased UMP at level $\alpha$.
Now we will show the existence of $\bar{f}$. Let $\vartheta_{0} := (b, b^{*}) \in \Theta_{0}, \vartheta_{1} := (\theta_{1}, \theta^{*}) \in \Theta_{1}$ be fixed. From proposition 3.19 by taking $m_{1} = 1$, $m_{2} = m - 1$, there exists $\sigma$-finite measure $\mu_{t^{*}}$ such that
\[\begin{eqnarray} \vartheta := \vartheta\_{0}, \ \vartheta\_{1}, \ N\_{\vartheta} & := & \left\\\{ t\_{m\_{1}+1:m} \in \mathbb{R}^{m\_{2}} \mid \int\_{\mathbb{R}^{m\_{1}}} \exp \left( \langle \vartheta\_{1:m\_{1}}, t\_{1:m\_{1}} \rangle \right) \ \mu\_{\vartheta^{\*}}(d t\_{1:m\_{1}}) = 0 \text{ or } \infty \right\\\} \\\\ P\_{\vartheta\_{1:m}}^{T^{\*}}(N\_{\vartheta}) & = & 0 \end{eqnarray}\]Let
\[\begin{eqnarray} N & := & N_{\vartheta_{0}} \cap N_{\vartheta_{1}} . \nonumber \end{eqnarray}\]Then
\[\begin{eqnarray} \vartheta := \vartheta\_{0}, \ \vartheta\_{1}, \ \forall t^{\*} \in N^{c}, \ P\_{\vartheta}(t^{\*}, d t\_{1}) & = & \frac{ \displaystyle \exp \left( \langle \vartheta\_{1}, t\_{1} \rangle \right) \nu\_{t^{\*}}(dt\_{1}) }{ K\_{\vartheta} } \\\\ K\_{\vartheta} & := & \displaystyle \int\_{\mathbb{R}^{m\_{1}}} \exp \left( \langle \vartheta\_{1}, \tau\_{1} \rangle \right) \nu\_{t^{\*}}(d\tau\_{1}) \end{eqnarray}\]By taking
- $\mu := P_{\vartheta_{1}}(t^{*}, \cdot)$,
- $g(t_{1}) := e^{(\theta_{1} - b)t_{1}} K_{\vartheta_{0}}/K_{\vartheta_{1}}$,
- $f_{1}(t_{1}) = 1$,
- $f_{2}(t_{1}) = t_{1}$,
- $c_{1} := \alpha$
- and $c_{2} := \alpha \int_{\mathbb{R}} t_{1} P_{\vartheta_{0}}(t^{*}, dt_{1})$,
$\Phi_{(c_{1}, c_{2})}$ in generalized Neyman-Peason’s lemma equals to (chap03_theorem_03_33_set_of_functions).
\[\begin{eqnarray} \int\_{\mathbb{R}} g(t) \bar{f}(t\_{1}, t^{\*}) \ \mu(dx) & = & \int\_{\mathbb{R}} \frac{ K\_{\vartheta\_{0}} }{ K\_{\vartheta\_{1}} } e^{(\theta\_{1} - b)t\_{1}} \bar{f}(t\_{1}, t^{\*}) \frac{ e^{bt\_{1}} }{ K\_{\vartheta\_{0}} } \ \mu\_{t^{\*}}(d t\_{1}) \\\\ & = & \int\_{\mathbb{R}} e^{\theta\_{1}t\_{1}} \bar{f}(t\_{1}, t^{\*}) \frac{ 1 }{ K\_{\vartheta\_{1}} } \ \mu\_{t^{\*}}(d t\_{1}) \\\\ & = & \int\_{\mathbb{R}} \bar{f}(t\_{1}, t^{\*}) \ P\_{\vartheta\_{1}}(t^{\*}, dt\_{1}) \end{eqnarray}\]Now we construct $\bar{f} \in \Phi_{\alpha}^{\vartheta_{0}, \vartheta_{1}, t^{*}}$. Let
\[\begin{eqnarray} F^{t^{\*}}(z) & := & \int\_{(-\infty, z]} \ P\_{\vartheta\_{0}}(t^{\*}, dt\_{1}) \\\\ U\_{1}^{t^{\*}}(p) & := & \inf \\\{ z \in \mathbb{R} \mid F^{t^{\*}}(z) \ge p \\\} \\\\ U\_{2}^{t^{\*}}(p) & := & \inf \\\{ z \in \mathbb{R} \mid F^{t^{\*}}(z) \ge 1 - \alpha + p \\\} \\\\ \Gamma\_{1}^{t^{\*}}(p) & := & (p - F^{t^{\*}}(U\_{1}^{t^{\*}}(p)-)) (F^{t^{\*}}(U\_{1}^{t^{\*}}(p)) - F^{t^{\*}}(U\_{1}^{t^{\*}}(p)-))^{-} \\\\ \Gamma\_{2}^{t^{\*}}(p) & := & (F^{t^{\*}}(U\_{2}^{t^{\*}}(p)) - (1 - \alpha) - p) (F^{t^{\*}}(U\_{2}^{t^{\*}}(p)) - F^{t^{\*}}(U\_{2}^{t^{\*}}(p)-))^{-} \\\\ \Psi^{t^{\*}}(t\_{1}, p) & := & 1\_{(-\infty, U\_{1}^{t^{\*}}(p))}(t) + \Gamma\_{1}^{t^{\*}}(p) 1\_{U\_{1}^{t^{\*}}(p)}(t) + \Gamma\_{2}^{t^{\*}}(p) 1\_{U\_{2}^{t^{\*}}(p)}(t) + 1\_{(U\_{2}^{t^{\*}}(p)), \infty)}(t) \\\\ S^{t^{\*}}(p) & := & \int\_{\mathbb{R}} t \Psi^{t^{\*}}(t\_{1}, p) \ P\_{\vartheta\_{0}}(t^{\*}, dt\_{1}) \end{eqnarray}\]where $x^{-}$ is zero if $x=0$ otherwise $x^{-1}$. Now we show that
\[\exists p^{t^{\*}} \in [0, \alpha], \ \text{ s.t. } \ S^{t^{\*}}(p^{t^{\*}}) = \alpha \int\_{\mathbb{R}} t\_{1} \ P\_{(b, b^{\*})}(dt\_{1}, t^{\*}) .\]It is enough to show that
- $S^{t^{*}}$ is continuous in $[0, p]$,
- If $p = 0$,
- If $p = \alpha$,
Then by intermediate value theorem, we obtain $p^{t^{*}}$. Now we define
\[\bar{p}^{t^{\*}} := \inf \{ p \in [0, \alpha] \mid S^{t^{\*}}(p) = \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{\*})}(dt_{1}, t^{\*}) \} .\]Finally, we constract $\bar{f}$ by
\[\bar{f}(t_{1}, t^{\*}) := \Psi^{t^{\*}}(t_{1}, p^{t^{\*}}) .\]$\bar{f}$ satisfies (chap03-theorem-03-33-condition-01);
\[\begin{eqnarray} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{\*}) \ P_{\vartheta_{0}}(t^{\*}, d t_{1}) & = & \alpha \end{eqnarray}\]Moreover, $\bar{f}$ satisfies (chap03-theorem-03-33-condition-02) by right continuity of $\Psi$ with respect to $p$, that is,
\[\begin{eqnarray} \int\_{\mathbb{R}} t \bar{f}(t\_{1}, t^{\*}) \ P\_{\vartheta\_{0}}(t^{\*}, d t\_{1}) & = & \alpha \int\_{\mathbb{R}} t \ P\_{\vartheta\_{0}}(t^{\*}, d t\_{1}) \end{eqnarray}\]By generalized Neyman-Peason’s lemma, the following equation holds
\[\begin{eqnarray} \int\_{\mathbb{R}} \bar{f}(t\_{1}, t^{\*}) g(t\_{1}) \ P\_{\vartheta\_{0}}(t^{\*}, dt\_{1}) & = & \int\_{\mathbb{R}} \bar{f}(t\_{1}, t^{\*}) g(t\_{1}) \ P\_{\vartheta\_{1}}(t^{\*}, dt\_{1}) \\\\ & = & \sup \left\\\{ \int\_{\mathbb{R}} f(t\_{1}, t^{\*}) g(t\_{1}) \ P\_{\vartheta\_{0}}(t^{\*}, dt\_{1}) = \int\_{\mathbb{R}} f(t\_{1}, t^{\*}) \ P\_{\vartheta\_{1}}(t^{\*}, dt\_{1}) \mid f \in \Psi\_{\alpha}^{\vartheta\_{0}, \vartheta\_{1}, t^{\*}} \right\\\} \end{eqnarray}\]This implies that (chap03_theorem_03_33_ump_condition) holds.
Appendix
Theorem A-1
- $(\mathcal{X}, \mathcal{A})$,
- measurable space
- $\mathcal{P} := \{ P_{\theta}\}_{\theta \in \Theta}$,
- probability measure over $(\mathcal{X}, \mathcal{A})$,
- $k \in \mathbb{N}$,
- $(\mathcal{X}^{(i)}, \mathcal{A}^{(i)})$,
- measurable space for $i = 1, \ldots, k$
- $\mathcal{P}^{(i)} := \{P_{\theta}^{(i)}\}_{\theta \in \Theta}$,
- probability measure over $(\mathcal{X}^{(i)}, \mathcal{A}^{(i)})$ for $i = 1, \ldots, k$
The following statements hold:
- (a) If $\mathcal{P}$ is an exponential family, $\forall P_{\theta}, P_{\theta^{\prime}} \in \mathcal{P}$, $P_{\theta} \ll P_{\theta^{\prime}}$, $P_{\theta} \ll P_{\theta^{\prime}}$,
- (b) If for all $i = 1, \ldots, n$, $\mathcal{P}^{(i)}$ is exponential family, then $\{\prod_{i=1}^{n} P_{\theta}^{(i)}\}$ is an exponential family over $( \prod_{i=1}^{n} \mathcal{X}^{(i)}, \prod_{i=1}^{n} \mathcal{A}^{(i)})$.
- (c) $T$ is sufficinet with respect to $\mathcal{P}$.
proof
(a)
Let $A \in \mathcal{A}$ be fixed.
\[P_{\theta}(A) = \int_{A} \exp \left( \sum_{i=1}^{m} a_{i}(\theta) T_{i}(x) - \psi(\theta) \right) \ \mu(dx)\] \[\begin{eqnarray} \frac{ d P_{\theta} }{ d P_{\theta^{\prime}} } & = & \frac{ d P_{\theta} }{ d\mu } \frac{ 1 }{ \frac{ d P_{\theta^{\prime}} }{ d\mu } } \\ & = & \exp \left( \sum_{j=1}^{m} (a_{j}(\theta) - a_{j}(\theta^{\prime})) T_{j}(x) \right) \nonumber \end{eqnarray}\] \[P_{\theta}(A) = \int_{A} \exp \left( \sum_{j=1}^{m} (a_{j}(\theta) - a_{j}(\theta^{\prime})) T_{j}(x) \right) \ P_{\theta^{\prime}}(dx)\]The integrand is positive so that $P_{\theta^{\prime}}(A) = 0$.
(b) Let $\mathcal{C}$ be a cylinder set. That is,
\[\mathcal{C} := \{ A_{1} \times \cdots \times A_{n} \mid A_{i} \in \mathcal{A}^{(i)} \} .\]Then
\[\begin{eqnarray} \forall A_{1} \times \cdots A_{n} \in \mathcal{C}, \ \left( \prod_{i=1}^{n} P_{\theta}^{(i)} \right) (A_{1} \times \cdots A_{n}) & = & \prod_{i=1}^{n} P_{\theta}^{(i)}(A_{i}) \ (\because \text{ by definition of product measure}) \\ & = & \prod_{i=1}^{n} \left( \int_{A_{i}} \frac{ d P_{\theta}^{(i)} }{ d \mu }(x_{i}) \ \mu(d x_{i}) \right) \\ & = & \int_{A_{1}\times \cdots A_{n}} \frac{ d P_{\theta}^{(1)} }{ d \mu }(x_{1}) \times \cdots \times \frac{ d P_{\theta}^{(n)} }{ d \mu }(x_{n}) \ \mu(d x) . \nonumber \end{eqnarray}\]Therefore,
\[\frac{ d \left( \prod_{i=1}^{n} P_{\theta}^{(i)} \right) }{ d \mu } = \prod_{i=1}^{n} \left( \frac{ d P_{\theta}^{(i)} }{ d \mu } \right) .\]Obviously, the RHS of the equation is an exponential family.
(c)
Immediate consequence of factorization theorem.