Statistical Hypothesis Small Sampling Theory
Formulation of hypothesis testing
Definition1 statistical hypothesis test
- $(\mathcal{X}, \mathcal{A})$,
- measurable space
- $\Theta \subseteq \mathbb{R}^{p}$,
- parameters
- ${P}_{\theta \in \Theta}$,
- probability measure over $(\mathcal{X},\mathcal{A})$,
- $\alpha \in [0, 1]$,
- constant
A pair of subsets $(\Theta_{0}, \Theta_{1}) \subseteq \Theta^{2}$ is said to be hypothesis and alternatives if $\Theta_{0} \cap \Theta_{1} = \emptyset$ and $\Theta_{0} \cup \Theta_{1} = \Theta$.
A measurable function $\phi: \mathcal{X} \rightarrow [0, 1]$ is said to be test, test function or critical function. In particular, test $\phi$ is said to be non-randomized if test $\phi$ is an indicator function. Otherwise, $\phi$ is randomized test.
For test $\phi$,
\[\sup_{\theta \in \Theta_{0}} \mathrm{E}_{\theta} \left[ \phi \right]\]is said to be size of test $\phi$ for hypothesis $\Theta_{0}$.
A test $\phi$ is said to be level $\alpha$ test or test at level $\alpha$ for hypothesis $\Theta_{0}$ if
\[\forall \theta \in \Theta_{0}, \ \mathrm{E}_{\theta} \left[ \phi \right] \le \alpha .\]We denote $\Phi_{\alpha}$ by set of level $\alpha$ tests.
For test $\phi$,
\[\beta_{\phi}(\theta) := \mathrm{E}_{\theta} \left[ \phi \right]\]is said to be power function or power.
For test $\bar{\phi} \in \Phi_{\alpha}$, $\bar{\phi}$ is said to be the uniformly most powerful test at level $\alpha$ if
\[\theta \in \Theta_{1}, \ \beta_{\phi}(\theta) \le \beta_{\bar{\phi}}(\theta)\]Remark2
- There is no common or standard definition for hypothesis and alternatives. Most books define it differently.
- Most books say $(\mathcal{X}, \mathcal{A})$ is any measurable space but in many cases they implicitly assume that $\mathcal{X} \subseteq \mathbb{R}^{d}$ and $\mathcal{A}$ is subset of borrel sigma algebra over $\mathcal{X}$.
- Power of test is a measure of goodness to the test.
Theorem3 Neyman-Peason’s fundamental lemma
- $\Theta_{0} := \{0\}$,
- $\Theta_{1} := \{1\}$,
- $P_{0}, P_{1}$
- distribution of $X$
- $\mu$
- sigma-finite measure over $(\mathcal{X}, \mathcal{A})$
- $p_{0}, p_{1}$
- radon nikodym derivative of $P_{i}$ with respect to $\mu$
- $H = \{P_{0}\}$,
- hypothesis
- $K = \{P_{1}\}$,
- alternatives
- $\alpha \in [0, 1]$,
(1)
\[\begin{eqnarray} \exists \phi: \text{ test}, \ \exists k, \gamma \in \mathbb{R} \ \text{ s.t. } \ \ \mathrm{E}_{0} \left[ \phi \right] & = & \alpha \label{chap03-03-07} \\ \phi(x) & = & \begin{cases} 1 & (p_{1}(x) > kp_{0}(x)) \\ \gamma & (p_{1}(x) = kp_{0}(x)) \\ 0 & p_{1}(x) < kp_{0}(x) \end{cases} \nonumber \\ & = & 1_{\\{p_{1} > kp_{0}\\}}(x) + \gamma 1_{\\{p_{1} = kp_{0}\\}}(x) \quad \mu \text{-a.e. } x \label{chap03-03-08} \end{eqnarray}\](2) If test $\phi$ satisifes \eqref{chap03-03-07} and \eqref{chap03-03-08}, then $\phi$ is most powerful test at level $\alpha$.
(3) If $\alpha \in (0, 1)$ and test $\phi$ is the most powerful test at level $\alpha$, then there exists $k, \gamma \in \mathbb{R}$ such that \eqref{chap03-03-08} satisfies.
proof.
proof of (1)
For $\alpha = 0$,
\[\begin{eqnarray} F(z) & := & P_{0} \left( \left\{ x \in \mathcal{X} \mid p_{1}(x) \le z p_{0}(x) \right\} \right) \nonumber \\ & = & \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) \ \mu(dx) \label{theorem-fundamental-neyman-peason-lemma-02-def-of-cdf} \end{eqnarray}\]$F$ is cumulative distribution function, that is, $F$ satisfies following propeties:
- (a) $F(+\infty) = 1$,
- (b) $F(-\infty) = 0$,
- (c) $F$ is right continuous,
- (d) $F$ is non decreasing.
Indeed, for (a), by monoton convergence theorem, we have
\[\begin{eqnarray} \int_{\mathcal{X}} 1_{\{x \mid \frac{p_{1}(x)}{p_{0}(x)} \le z\}}(x) p_{0}(x) \ \mu(dx) & \nearrow & \int_{\mathcal{X}} p_{0}(x) \ \mu(dx) \quad (z \rightarrow \infty) \nonumber \\ & = & 1 . \nonumber \end{eqnarray}\](b) is obivous since
\[P(p_{i}(x) < 0) = 0 .\]For (c), let $z \in \mathbb{R}$ be fixed. For all sequence \(\{z_{n}\_{n \in \mathbb{N}}\), $z_{n} \searrow z$, we have
\[\begin{eqnarray} \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z_{n}\}}(x) p_{0}(x) \ \mu(dx) - \int_{\mathcal{X}} 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) \ \mu(dx) & = & \int_{\mathcal{X}} ( 1_{\{\frac{p_{1}}{p_{0}} \le z_{n}\}}(x) - 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) ) p_{0}(x) \ \mu(dx) . \nonumber \end{eqnarray}\]By taking the limit of equation above as $n \rightarrow \infty$, it converges to 0 by Lebesgue dominated convergence theorem. Hence (c) holds. Finally we show (d). But this is obvious since integrand satisifies that
\[\forall z < z^{\prime}, \ \Rightarrow \ \forall x \in \mathcal{X}, \ 0 \le 1_{\{\frac{p_{1}}{p_{0}} \le z\}}(x) p_{0}(x) < 1_{\{\frac{p_{1}}{p_{0}} \le z^{\prime}\}}(x) p_{0}(x) .\]Therefore, $F$ is cumulative distribution. Since $F$ is non decreasing and right continuous,
\[\begin{equation} 0 < \forall \alpha < 1, \ \exists k \in \mathbb{R}, \ \text{ s.t. } \ F(k-) \le 1 - \alpha \le F(k) . \label{theorem-fundamental-neyman-peason-lemma-01} \end{equation}\]Indeed, let $\alpha \in (0, 1)$ be fixed. We denote
\[\begin{eqnarray} A & := & \{ x \in \mathbb{R} \mid 1 - \alpha \le F(x) \} \nonumber \\ k & := & \inf A \nonumber \\ B & := & \{ x \in \mathbb{R} \mid F(x) \le 1 - \alpha \} . \nonumber \\ c & := & \sup B . \nonumber \end{eqnarray}\]By right-continuity,
\[\forall \{k_{n}\}, \ k_{n} \searrow k, \ \lim_{n \rightarrow \infty} F(k_{n}) = F(k) \ge 1 - \alpha .\]Then $F$ is non decreasing so that
\[\forall \{k_{n}\}_{n \in \mathbb{N}}, \ k_{n} \nearrow k, \ \Rightarrow \ k_{n} \le c .\]We can easily check this. Suppose there exists $n$ such that $c < k_{n}$. $F$ is non decreasing so that $F(c) < F(k_{n})$. If $1 - \alpha \le F(k_{n})$, $k_{n} \in A$ but this contradict to $k_{n} \le k$. In other hand, if we assume $F(k_{n}) < 1 - \alpha$, $k_{n} \in B$ so that $k_{n} \le c$. Therefore the above statement hold. By combining our observations, we have
\[\lim_{n \rightarrow \infty} F(k_{n}) \le F(c) \le 1 - \alpha \le F(k) .\]The equation \eqref{theorem-fundamental-neyman-peason-lemma-01} holds. Now we define constant $\gamma$
\[\gamma := \begin{cases} 0 & F(k) = F(k-) = 1 - \alpha \\ \frac{F(k) - (1 - \alpha)}{F(k) - F(k-)} & \text{otherwise} \end{cases} ,\]and test $\phi$
\[\phi(x) := 1_{\{p_{1} > k p_{0}\}}(x) + \gamma 1_{\{p_{1} = k p_{0}\}}(x) .\]Then we have
\[\begin{eqnarray} \mathrm{E}_{0} \left[ \phi \right] & = & P_{0}(p_{1} > k p_{0}) + \gamma P_{0}(p_{1} = k p_{0}) \nonumber \\ & = & 1 - F(k) + \gamma (F(k) - F(k-)) \nonumber \\ & = & \begin{cases} 1 - (1- \alpha) & F(k) = F(k-) = 1 - \alpha \\ 1 - F(k) - ( F(k) - (1 - \alpha) ) & \text{otherwise} \end{cases} \nonumber \\ & = & \alpha \end{eqnarray}\]proof of (2)
Let $\phi$ be test. There exist $k, \gamma \in \mathbb{R}$ such that $\phi$ satisfies that \eqref{chap03-03-07} and \eqref{chap03-03-08}. For all test $\phi^{\prime}: \mathcal{X} \rightarrow [0, 1]$ at level $\alpha$, from \eqref{chap03-03-08},
\[(\phi - \phi^{\prime}) (p_{1} - k p_{0}) \ge 0 \quad \mu \text{-a.e.}\]Hence the integral of the equation satisfies
\[\int_{\mathcal{X}} (\phi - \phi^{\prime}) (p_{1} - k p_{0}) \ \mu(x) \ge 0\]Form the equation above,
\[\begin{eqnarray} \int_{\mathcal{X}} (\phi - \phi^{\prime}) p_{1} \ \mu(x) & \ge & k \int_{\mathcal{X}} (\phi - \phi^{\prime}) p_{0} \ \mu(x) \nonumber \\ & = & k \mathrm{E}_{0} \left[ \phi \right] - k \mathrm{E}_{0} \left[ \phi^{\prime} \right] \nonumber \\ & = & k \left( \alpha - \mathrm{E}_{0} \left[ \phi^{\prime} \right] \right) \ge 0 \quad (\because \phi^{\prime} \text{ is test at level } \alpha) \nonumber \end{eqnarray}\]Therefore
\[\mathrm{E}_{1} \left[ \phi \right] \ge \mathrm{E}_{1} \left[ \phi^{\prime} \right] .\]proof of (3)
Let $\phi^{\prime}$ be most powerful test at level $\alpha$. As we have already shown in (1), there exist the most powerful test $\phi$ at level $\alpha$. By definition of $\phi$ and (2),
\[\int_{\mathcal{X}} (\phi - \phi^{\prime}) (p_{1} - k p_{2}) \ \mu(x) \ge 0 .\]In other hand, $\phi^{\prime}$ is most powerful test at level $\alpha$ so that we have
\[\mathrm{E}_{1} \left[ \phi^{\prime} \right] \ge \mathrm{E}_{1} \left[ \phi \right] .\]Example4
- $n \in \mathbb{N}$,
- $\Theta := [0, 1]$,
- $\mathcal{X} := {0, 1, \ldots, n}$,
- $\mu: \mathcal{X} \rightarrow [0, 1]$
- countable measure
- $P_{\theta}:= B(n, \theta)$
- binominal distribution
- $\theta_{i} \in \Theta$,
- $0 < \theta_{0} < \theta_{1} < 1$,
We consinder hypothesis test:
\[\Theta_{H} := \{\theta_{0}\}, \ \Theta_{K} := \{\theta_{0}\} .\]We have
\[\log \frac{ p_{\theta_{0}}(x) }{ p_{\theta_{1}}(x) } = ax + n \log \frac{ 1 - \theta_{1} }{ 1 - \theta_{0} }\]where
\[a := \log \frac{ \theta_{1}/(1 - \theta_{1}) }{ \theta_{0}/(1 - \theta_{0}) } > 0 .\]Now let
\[\phi(x) := \begin{cases} 1 & x > x_{0} \\ \gamma & x = x_{0} \\ 0 & x < x_{0} \end{cases}\]where $\gamma$ and $x_{0}$ are taken to satisfy $\beta_{\phi}(\theta_{0}) = \alpha$. $\phi$ is the unimofrmly most powerful test for hypothesis $\Theta_{H$}$ and alternatives $\Theta_{K}$.
Monotone likehood ratio and composite hypothesis test
- $\Theta \subseteq \mathbb{R}$,
- $(\mathcal{X}, \mathcal{A})$,
- measurable space
- $\mathcal{P} := {P_{\theta} }_{\theta \in \Theta}$,
- family of probability distribution over $(\mathcal{X}, \mathcal{A})$
- $\mu: \mathcal{X} \rightarrow [0, \infty)$
- $\sigma$ finite measure on $(\mathcal{X}, \mathcal{A})$
Assumptions
\[\forall \theta, \ \mu \gg P_{\theta} .\]Definition monotone likelihood ratio
- $T: \mathcal{X} \rightarrow \mathbb{R}_{\ge 0}$
- measurable function
$\mathcal{P}$ is said to be monotone likelihood ration with respect to $T$ if
\[\begin{eqnarray} \forall \theta_{1}, \theta_{2} \in \Theta, \ \theta_{1} < \theta_{2}, \ \exists H_{\theta_{1}, \theta_{2}}:T(\mathcal{X}) \rightarrow [0, \infty] \text{ s.t. } & & H \text{ is non-decreasing}, \nonumber \\ & & \forall x \in \mathcal{X}_{\theta_{1}, \theta_{2}} , \ \frac{p_{\theta_{2}}}{p_{\theta_{1}}}(x) = H_{\theta_{1}, \theta_{2}}(T(x)) \nonumber \end{eqnarray}\]We assume $c/0 = \infty$ for $c > 0$.
Example5
- $\Theta \subseteq \mathbb{R}$,
- \(\mathcal{P} := \{P_{\theta} \}_{\theta \in \Theta}\),
- one prameter exponential family
That is, there exist $g: \mathcal{X} \rightarrow \mathbb{R}_{\ge 0}$, $a: \Theta \rightarrow \mathbb{R}$, $\psi: \Theta \rightarrow \mathbb{R}$ such that
\[p_{\theta}(x) := g(x) \exp \left( a(\theta) T(x) - \psi(\theta) \right) \ (x \in \mathcal{X}) .\]If $a$ is non-decreasing function, then $\mathcal{P}$ is monotone likelihood ration with respect to $T$.
Theorem6 UMP test for MLR
- $\theta_{0} \in \Theta \subseteq \mathbb{R}$,
- given
- \(\mathcal{P} := \{P_{\theta}\}_{\theta \in \Theta}\),
- monotone likelihood ratio in statistics $T$
- \(\{\theta \mid \theta > \theta_{0}\} \neq \emptyset\),
- $c \in \mathbb{R}$,
- $\gamma \in [0, 1]$,
(a) Let
\[\begin{eqnarray} \phi_{0}(x) & := & \begin{cases} 1 & (T(x) > c) \\ \gamma & (T(x) = c) \\ 0 & (T(x) < c) \end{cases} \nonumber \\ & = & 1_{\{x \mid T(x) >c\}}(x) + \gamma 1_{\{x \mid T(x) =c\}}(x) \label{chap03-03-22-test} \end{eqnarray}\]If \(\mathrm{E}_{\theta_{0}} \left[ \phi_{0} \right] > 0\), then $\phi_{0}$ is the most powerful test at level \(\alpha^{\prime} := \mathrm{E}_{\theta_{0}}[\phi_{0}]\) for hypothesis test
\[\begin{equation} \Theta_{H} := \{\theta \mid \theta \le \theta_{0}\}, \ \Theta_{K} := \{\theta \mid \theta > \theta_{0}\}, \label{chap03-03-23-hypothesis-test} \end{equation}\](b) For $\alpha \in (0, 1)$,
\[\exists c \in \mathbb{R}, \ \gamma \in [0, 1], \ \text{ s.t. } \ \phi_{0}: \ \eqref{chap03-03-22-test} \text{ is the most powerful test at level } \alpha\]proof
(a)
Let $\Phi(\Theta_{H}, \Theta_{K}, \alpha^{\prime})$ be a set of tests for $\Theta_{H}$ and $\Theta_{K}$ at level $\alpha^{\prime}$. We need to show
\[\begin{equation} \forall \phi \in \Phi(\Theta_{H}, \Theta_{K}, \alpha^{\prime}), \ \theta_{1} \in \Theta_{K}, \ \mathrm{E}_{\theta_{1}}[\phi_{0}] \ge \mathrm{E}_{\theta_{1}}[\phi] \label{chap03-monotone-likehood-ratio-ump-test} \end{equation}\]and
\[\begin{equation} \sup_{\theta \in \Theta_{H}} \mathrm{E}_{\theta} \left[ \phi_{0} \right] \le \alpha^{\prime} \label{chap03-monotone-likehood-ratio-level-alpha-test} . \end{equation}\]We first show \eqref{chap03-monotone-likehood-ratio-ump-test}. Let $\theta_{1} \in \Theta_{K}$ be fixed and
\[k := \inf \left\{ \frac{p_{\theta_{1}}(x)}{p_{\theta_{0}}(x)} \mid x \in \mathcal{X}_{\theta_{1}, \theta_{2}}, \ T(x) \ge c \right\} .\]Then $k \in \mathbb{R}_{\ge 0}$. Indeed,
\[\begin{eqnarray} \mu( \{ x \in \mathcal{X}_{\theta_{0}, \theta_{1}} \mid p_{\theta_{0}}(x) \neq 0, \ T(x) \ge c \} ) & = & \mu( \{ x \in \mathcal{X}_{\theta_{0}, \theta_{1}} \mid T(x) \ge c \} ) \nonumber \\ & > & 0 \end{eqnarray}\]since
\[\int_{\mathcal{X}_{\theta_{0}, \theta_{1}}} 1_{\{T \ge c\}}(x) p_{\theta_{0}}(x) \ \mu(dx) = P_{\theta_{0}}(T \ge c) \ge \mathrm{E}_{\theta_{0}}[\phi_{0}] > 0 .\]Morever $p_{\theta_{1}} < \infty \ \mu \text{-a.e.}$ by definition. Therefore $k < \infty$.
Now we show that
\[\begin{eqnarray} x \in \mathcal{X}_{\theta_{0}, \theta_{1}}, \ p_{\theta_{1}}(x) > kp_{\theta_{0}}(x), & \Rightarrow & \phi_{0}(x) = 1 \nonumber \\ x \in \mathcal{X}_{\theta_{0}, \theta_{1}}, \ p_{\theta_{1}}(x) < kp_{\theta_{0}}(x), & \Rightarrow & \phi_{0}(x) = 0 \label{chap03-03-24} . \end{eqnarray}\]Let \(x \in \mathcal{X}_{\theta_{0}, \theta_{1}}\) be fixed. Suppose that $p_{\theta_{1}}(x)/p_{\theta_{0}}(x) > k$. To show $\phi(x) = 1$, it is sufficient to see $T(x) > c$. By definition of $k$, there exists \(x^{\prime} \in \mathcal{X}_{\theta_{0}, \theta_{1}}\) such that
\[k \le \frac{p_{\theta_{1}}(x^{\prime})}{p_{\theta_{0}}(x^{\prime})} < \frac{p_{\theta_{1}}(x)}{p_{\theta_{0}}(x)}, \ T(x^{\prime}) \ge c .\]If we assume $T(x) \le c$, by definiiton of monotone likelihood ratio,
\[\begin{eqnarray} \frac{ p_{\theta_{1}}(x) }{ p_{\theta_{0}}(x) } & = & H_{\theta_{0}, \theta_{1}}(T(x)) \nonumber \\ & \le & H_{\theta_{0}, \theta_{1}}(c) \nonumber \\ & \le & H(T(x^{\prime})) \nonumber \\ & \le & \frac{ p_{\theta_{1}}(x^{\prime}) }{ p_{\theta_{0}}(x^{\prime}) } \nonumber \end{eqnarray}\]This is contradiction so that $\phi(x) = 1$. Suppose that \(p_{\theta_{1}}(x)/p_{\theta_{0}}(x) < k\). If $T(x) \ge c$, $k$ cannot be infimum. Hence $T(x) < c$.
From theorem and \eqref{chap03-03-24}, test $\phi_{0}$ is the most powerful test of hypothesis test \(\Theta_{H}^{\prime} := \{\theta_{0}\}\) and \(\Theta_{K}^{\prime} := \{\theta_{1}\}\) at level \(\alpha^{\prime} := \mathrm{E}_{\theta_{0}}[\phi_{0}]\).
Let $\phi$ be test for \(\Theta_{H}\) and \(\Theta_{K}\) at level \(\alpha^{\prime}\). Then $\phi$ is also test for \(\Theta_{H}^{\prime}\) and \(\Theta_{K}^{\prime}\) at level \(\alpha^{\prime}\). Hence
\[\begin{equation} \mathrm{E}_{\theta_{1}} \left[ \phi_{0} \right] \ge \mathrm{E}_{\theta_{1}} \left[ \phi \right] \label{chap03-03-26} \end{equation} .\]\(\theta_{1}\) is arbitrary fixed so that \eqref{chap03-03-26} holds for all \(\theta-{1} \in \Theta-{K}\).
Now we show that \eqref{chap03-monotone-likehood-ratio-level-alpha-test}. It suffices to show that
\[\forall \theta_{2} < \theta_{0}, \ \mathrm{E}_{\theta_{2}} \left[ \phi_{0} \right] \le \alpha^{\prime}\]With out loss of generality, \(\mathrm{E}_{\theta_{2}}[\phi_{0}] > 0\). Indeed, if \(\mathrm{E}_{\theta_{2}}[\phi_{0}] = 0\), the equation always holds since \(0 \le \alpha^{\prime}\). Let $\theta_{2} < \theta_{0}$ be fixed. From discussion above, \(\phi_{0}\) is the most powerful test at level \(\alpha^{\prime\prime} := \mathrm{E}_{\theta_{2}}[\phi_{0}]\) for hypothesis \(\Theta_{H}^{\prime\prime} := \{\theta_{2}\}\) and alternatives \(\Theta_{K}^{\prime\prime} := \{\theta_{0} \}\) by substituting \(\theta_{2}\) for \(\theta_{0}\) and \(\theta_{0}\) for \(\theta_{1}\), respectively. Since \(\alpha^{\prime\prime}\) is one of tests at level \(\alpha^{\prime\prime}\) for hypothesis \(\Theta_{H}^{\prime\prime}\) and alternatives \(\Theta_{K}^{\prime\prime}\), we have
\[\begin{eqnarray} & & \mathrm{E}_{\theta_{0}}[\alpha^{\prime\prime}] \le \mathrm{E}_{\theta_{0}}[\phi_{0}] \nonumber \\ & \Leftrightarrow & \alpha^{\prime\prime} \le \mathrm{E}_{\theta_{0}}[\phi_{0}] \nonumber \\ & \Leftrightarrow & \mathrm{E}_{\theta_{2}}[\phi_{0}] \le \mathrm{E}_{\theta_{0}}[\phi_{0}] = \alpha^{\prime} \nonumber \end{eqnarray}\](b)
Let
\[F(u) := P_{\theta_{0}}(T \le u) .\]Then there exists $c \in \mathbb{R}$ such that
\[F(c-) \le 1 - \alpha \le F(c) .\]Now, let
\[\gamma := \begin{cases} 0 & F(c) - F(c-) = 0 \\ \frac{ (\alpha - 1 + F(c)) }{ F(c) - F(c-) } & F(c) - F(c-) > 0 \end{cases} .\]Then $\phi_{0}$ defined in \eqref{chap03-03-22-test} is the most powerful test at level \(\alpha := \mathrm{E}_{\theta_{0}}[\phi_{0}]\) for hypothesis \(\Theta_{H}\) and alternative \(\Theta-{K}\) by (a).
Generalized Neyman Peason’s lemma
Theorem7 Generalized neyman pearson fundamental lemma
- $(\mathcal{X}, \mathcal{A})$,
- measurable sp.
- $\mu: \Omega \rightarrow [0, \infty)$,
- $\sigma$-finite measure over $(\mathcal{X}, \mathcal{A})$
- \(\Phi := \{\phi \mid \phi: \mathcal{X} \rightarrow [0, 1]: \text{ measurable function}\}\),
- \(f_{1}, \ldots, f_{m}, g \in L^{1}(\mathcal{X}, \mathcal{A}, \mu)\),
Then
(a) Let \(\phi_{0} \in \Phi_{c}\). If there eixist \(k_{1}, \ldots, k_{m} \in \mathbb{R}\) such that
\[\begin{equation} \phi_{0}(x) = \begin{cases} 1 & (g(x) > \sum_{i=1}^{m}k_{i}f_{i}(x)) \\ 0 & (g(x) < \sum_{i=1}^{m}k_{i}f_{i}(x)) \end{cases} \ \mu \text{-a.e.} \label{chap03-03-27-test} \end{equation} ,\]then
\[\int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) = \sup \left\{ \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) \mid \phi \in \Phi_{c} \right\} .\](b) Let \(\phi_{0} \in \Phi_{c}\). If there exists \(k_{1}, \ldots, k_{m} \in \mathbb{R}_{\ge 0}\) such that \eqref{chap03-03-27-test} is satisfied, then
\[\int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) = \sup \left\{ \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) \mid \phi \in \Phi, \ \int_{\mathcal{X}} \phi(x) f_{i}(x) \ \mu(dx) \le c_{i} (i = 1, \ldots, m) \right\}\]proof
(a)
Since \(\phi_{0} \in \Phi_{c}\),
\[\begin{eqnarray} \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi_{0}(x) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \end{eqnarray}\]On the other hand, for all $\phi \in \Phi_{c}$
\[\begin{eqnarray} \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & = & \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi(x) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) . \nonumber \end{eqnarray}\]Therefore,
\[\begin{eqnarray} \forall \phi \in \Phi_{c}, \ \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) + \sum_{i=1}^{m} k_{i}c_{i} - \sum_{i=1}^{m} k_{i}c_{i} \nonumber \\ & = & \int_{\mathcal{X}} (\phi_{0}(x) - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & = & \int_{g(x) > \sum_{j=1}^{m}k_{i}f_{i}(x)} (1 - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\](b)
For simplicity, let
\[B := \left\{ \phi \in \Phi \mid \int_{\mathcal{X}} \phi(x)f_{i}(x) \ \mu(dx), \le c_{i} \ (i = 1, \ldots, m) \right\} .\]Since $\phi_{0} \in \Phi_{c}$, we have $\phi \in B$. For all $\phi \in B$,
\[\begin{eqnarray} \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} & \le & \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \int_{\mathcal{X}} \sum_{j=1} k_{i}f_{i}(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) . \nonumber \end{eqnarray}\]Therefore,
\[\begin{eqnarray} \forall \phi \in B, \ \int_{\mathcal{X}} \phi_{0}(x) g(x) - \phi(x) g(x) \ \mu(dx) & = & \int_{\mathcal{X}} \phi_{0}(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} - \left( \int_{\mathcal{X}} \phi(x) g(x) \ \mu(dx) - \sum_{i=1}^{m} k_{i}c_{i} \right) \nonumber \\ & \ge & \int_{\mathcal{X}} (\phi_{0}(x) - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & = & \int_{g(x) > \sum_{j=1}^{m}k_{i}f_{i}(x)} (1 - \phi(x)) \left( g(x) - \sum_{j=1} k_{i}f_{i}(x) \right) \ \mu(dx) \nonumber \\ & \ge & 0 . \nonumber \end{eqnarray}\]Unbiased test
Definition8 Unbiased test
- $(\mathcal{X}, \mathcal{A})$,
- measurable sp.
- $\Theta = \Theta_{0} \sqcup \Theta_{1}$,
- parameter sp.
- $\Theta_{0} \neq \emptyset$,
- Hypothesis
- $\Theta_{1} \neq \emptyset$,
- Alternatives
- $\alpha \in [0, 1]$,
- $\phi: \mathcal{X} \rightarrow [0, 1]$
- test at level$\alpha$
$\phi$ is said to be unibiased if
\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi \right] \ge \alpha .\]That is, power of the test $\phi$ is uniformly higher or equal to power of a trivial test $\phi^{\prime} \equiv \alpha$ at level $\alpha$.
We denote $\Phi_{\alpha}^{\mu}$ by a set of all unibiased test at level $\alpha$.
Remark
A trival test $\phi^{\prime} \equiv \alpha$ at level $\alpha$ is interpreted as the test is accepted at random with the probability $\alpha$. An unbiased test at level $\alpha$ means that the unbiased test is not worse than at random.
Definition9
- $\Theta^{\prime} \subset \Theta$,
- $\phi$
- test
$\phi$ is said to be similar to $\Theta^{\prime}$ if
\[\exists c \in \mathbb{R} \text{ s.t. } \forall \theta \in \Theta^{\prime}, \ c = \mathrm{E}_{\theta} \left[ \phi \right] .\]Proposition10
- $\Theta$,
- topological space
- $\Theta_{i} \subseteq \Theta \ (i = 0, 1)$,
- disjoint set
- $(\Theta_{i})^{b} \ (i = 0, 1)$,
- boundary of set $\Theta_{i}$,
- $\Theta^{\prime} := (\Theta_{0})^{b} \cap (\Theta_{1})^{b} \neq \emptyset$,
- $\phi: \mathcal{X} \rightarrow [0, 1]$,
- unbiased test for Hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$,
- \(\beta_{\phi}: \Theta \rightarrow [0, 1]\),
- continuous
Then $\phi$ is similar to $\Theta^{\prime}$.
proof
Let $\theta \in \Theta^{\prime}$ and $\epsilon > 0$ be fixed. Since $\beta_{\phi}$ is continuous,
\[\exists \theta_{0} \in \Theta_{0}, \ \exists \theta_{1} \in \Theta_{1}, \ \text{ s.t. } \ | \mathrm{E}_{\theta_{i}} \left[ \phi \right] - \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] | \le \epsilon \ (i = 0, 1)\]$\phi$ is unbiased,
\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi \right] \ge \alpha .\]Then
\[\begin{eqnarray} \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] \right| & \le & \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] - \mathrm{E}_{\theta_{0}} \left[ \phi \right] \right| + \left| \mathrm{E}_{\theta_{0}} \left[ \phi \right] \right| \nonumber \\ & \le & \epsilon + \alpha \nonumber \end{eqnarray}\] \[\begin{eqnarray} \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] \right| & \ge & - \left| \mathrm{E}_{\theta^{\prime}} \left[ \phi \right] - \mathrm{E}_{\theta_{1}} \left[ \phi \right] \right| + \left| \mathrm{E}_{\theta_{1}} \left[ \phi \right] \right| \nonumber \\ & \ge & - \epsilon + \alpha \nonumber \end{eqnarray}\]Since $\epsilon$ is arbitrary, \(\beta_{\phi}(\theta^{\prime}) = \alpha\).
Proposition11
- $\Theta^{\prime} \neq \emptyset \subset \Theta$
- $\phi_{0} \in \Phi_{\alpha}^{\prime}$,
If $\phi_{0}$ satisfies
\[\begin{eqnarray} \forall \theta \in \Theta_{0}, \ \forall \phi \in \Phi_{\alpha}^{\prime}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] & \le & \mathrm{E}_{\theta} \left[ \phi \right] \nonumber \\ \forall \theta \in \Theta_{1}, \ \forall \phi \in \Phi_{\alpha}^{\prime}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] & \ge & \mathrm{E}_{\theta} \left[ \phi \right] \nonumber \end{eqnarray}\]then, $\phi_{0}$ is a unbiased test at level $\alpha$ for hypothesis $\Theta_{0}$ and alternative $\Theta_{1}$.
proof
Since $\phi \equiv \alpha \in \Phi_{\alpha}^{\prime}$ and assumptions of $\phi_{0}$, we obtain
\[\forall \theta \in \Theta_{0}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] \le \alpha .\]Hence $\phi_{0}$ is test at level $\alpha$. Similarly, we obtain
\[\forall \theta \in \Theta_{1}, \ \mathrm{E}_{\theta} \left[ \phi_{0} \right] \ge \alpha .\]Therefore $\phi_{0}$ is unbiased test.
Remark12
From both proposition, we can find an unbiased test by finding the best test only in a set of similar tests.
- $m \le 2$,
- $\Theta \subseteq \mathbb{R}^{m}$,
- open interval
- \(\{P_{\theta}\}_{\theta \in \Theta}\),
- exponential family
Theorem13 unbiased UMP
- $b \in \mathbb{R}$,
- given
- \(\Theta_{0} := \{(b, \theta^{*}) \mid \theta \in \Theta\}\),
- \(\Theta_{1} := \{\theta \mid \theta_{1} \neq b \in \Theta\}\),
- $0 < \alpha < 1$,
For test for hypothesis $\Theta_{0}$ and alternatiev $\Theta_{1}$, there exists uniformly most powerful test at level level $\alpha$ such that
\[\phi_{0}(x) = \begin{cases} 1 & (T_{1}(x) < u_{1}(T^{*}(x)) \lor T_{1}(x) > u_{2}(T^{*}(x))) \\ \gamma_{1}(T^{*}(x)) & T_{1}(x) = u_{1}(T^{*}(x)) \\ \gamma_{2}(T^{*}(x)) & T_{1}(x) = u_{2}(T^{*}(x)) \\ 0 & u_{1}(T^{*}(x)) < T_{1}(x) < u_{2}(T^{*}(x)) \end{cases}\]where
- $\gamma_{i}: \mathbb{R}^{m-1} \rightarrow \mathbb{R} \ (i = 1, 2)$,
- $\mathcal{B}(\mathbb{R}^{m-1})$ measurable function
- $u_{i}: \mathbb{R}^{m-1} \rightarrow \mathbb{R} \ (i = 1, 2)$,
- $\mathcal{B}(\mathbb{R}^{m-1})$ measurable function
proof
Since $\Theta$ is an open interval, $(b , \theta^{*})$ is an interior point for all $\theta \in \Theta$. By proposition 3.31, any unbiased test at level $\alpha$ is similar to $\Theta_{0}$:
\[\begin{equation} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] = \alpha \ (\forall \theta \in \Theta) \label{chap03-03-33} . \end{equation}\]\(\{P_{(b, \theta{*})}\}_{\theta^{*} \in \Theta^{*}}\) is an exponential family.
By theorem in appendix, \(T^{*}\) is sufficient to \(\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}\). Moreover, since the inner of $\Theta$ is not empty, $T^{*}$ is complete with respect to \(\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}\) by theorem 3.18. Then follwoing equation holds
\[\begin{equation} \forall \theta^{*} \in \Theta^{*}, \ \mathrm{E}_{(b, \theta^{*})} \left[ \phi \mid T^{*} = \cdot \right] = \alpha \quad P_{(b, \theta^{*})}^{T^{*}} \text{-a.s.} \label{chap03-theorem-03-33-equation-for-03-34} \end{equation}\]Indeed,
\[\begin{eqnarray} \forall \theta \in \Theta, \ \int_{\mathbb{R}^{m-1}} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \mid T^{*} = t^{*} \right] \ P_{(b, \theta^{*})}^{T^{*}}(d t^{*}) & = & \int_{(T^{*})^{-1}(\mathbb{R}^{m-1})} \phi(x) \ P_{(b, \theta^{*})}(dx) \nonumber \\ & = & \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] \nonumber \\ & = & \alpha \nonumber \end{eqnarray}\]Then by completeness of $T^{*}$ with respect to \(\{P_{(b, \theta^{*})}\}_{\theta^{*} \in \Theta^{*}}\), we obtain the equation \eqref{chap03-theorem-03-33-equation-for-03-34}. Now we show
\[\begin{eqnarray} \forall \theta \in \Theta, \ \mathrm{E}_{(b, \theta^{*})} \left[ \left. \phi \right| T^{*} \right] = \alpha \quad P_{(b, \theta^{*})} \text{-a.s.} \label{chap03-03-34} \end{eqnarray}\]By using \(\eqref{chap03-theorem-03-33-equation-for-03-34}\) and the definition of conditional expectation, we have
\[\begin{eqnarray} \forall \theta \in \Theta, \ \forall (T^{*})^{-1}(B) \in \sigma(T^{*}), \ \int_{(T^{*})^{-1}(B)} \mathrm{E}_{(b, \theta^{*})} \left[ \phi \mid T^{*} \right](x) \ P_{(b, \theta^{*})}(dx) & = & \int_{(T^{*})^{-1}(B)} \phi(x) \ P_{(b, \theta^{*})}(dx) \nonumber \\ & = & \int_{B} \mathrm{E} \left[ \left. \phi \right| T^{*} = t \right] \ P_{(b, \theta^{*})}^{T^{*}}(dt) \nonumber \\ & = & \int_{B} \alpha \ P_{(b, \theta^{*})}^{T^{*}}(dt) \nonumber \\ & = & \int_{(T^{*})^{-1}(B)} \alpha \ P_{(b, \theta^{*})}(dx) \nonumber \end{eqnarray}\]Then by the definition of conditional expectation, we obtain \eqref{chap03-03-34}.
By proposition 3.17, \(\beta_{\phi}(\theta)\) is differentialble with respect to $\theta_{1}$.
\[\begin{eqnarray} \frac{\partial}{\partial \theta_{1}} \mathrm{E}_{\theta} \left[ \phi \right] & = & \frac{\partial}{\partial \theta_{1}} \int_{\mathcal{X}} \phi(x) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi(x) \left( T_{1}(x) - \frac{\partial}{\partial \theta_{1}} \psi(\theta) \right) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \nonumber \\ & = & \int_{\mathcal{X}} \phi(x) T_{1}(x) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) - \int_{\mathcal{X}} \phi(x) \frac{\partial}{\partial \theta_{1}} \psi(\theta) \exp \left( \sum_{i=1}^{m} \theta_{i}T_{i}(x) - \psi(\theta) \right) g(x) \ \mu(dx) \nonumber \\ & = & \mathrm{E}_{(\theta_{1}, \theta^{*})} \left[ \phi T_{1} \right] - \mathrm{E}_{(\theta_{1}, \theta^{*})} \left[ \phi \frac{\partial}{\partial \theta_{1}} \psi(\theta) \right] . \nonumber \end{eqnarray}\]$\phi$ is level $\alpha$ unbiased test so that we have
\[\begin{eqnarray} \forall \theta \in \Theta_{0}, \ \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] & \le & \alpha \quad (\because \text{ level } \alpha) \nonumber \\ \forall \theta \in \Theta_{1}, \ \mathrm{E}_{(\theta_{1}, \theta^{*})} \left[ \phi \right] & \ge & \alpha \quad (\because \text{ unbiased}) . \end{eqnarray}\]Hence $\beta_{\phi}((\theta_{1}, \theta^{*}))$ achieves the minimum at $\theta = b$ as a function of $\theta_{1}$. From above observations,
\[\begin{eqnarray} & & \mathrm{E}_{(b, \theta^{*})} \left[ \phi T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \mathrm{E}_{(b, \theta^{*})} \left[ \phi \right] \nonumber \\ & \Leftrightarrow & \mathrm{E}_{(b, \theta^{*})} \left[ \phi T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \alpha \quad (\because \eqref{chap03-03-33}) . \nonumber \end{eqnarray}\]Since $\phi$ is arbitrary unbiased test at level $\alpha$, we put $\phi \equiv \alpha$.
\[\begin{eqnarray} & & \alpha \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \alpha \nonumber \\ & \Leftrightarrow & \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] = \frac{\partial}{\partial \theta_{1}} \psi(b, \theta^{*}) \nonumber . \end{eqnarray}\]Then for all level $\alpha$ unbiased test $\phi$ we obtain
\[\mathrm{E}_{(b, \theta^{*})} \left[ \phi T_{1} \right] = \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] \alpha .\]With the same way discussed in \eqref{chap03-03-34}, we have
\[\begin{equation} \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} = t \right] = \alpha \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \mid T^{*} = t \right] \quad P_{(b, \theta^{*})}^{T^{*}} \text{-a.s.} \label{chap03-theorem-03-33-equation-for-03-35} \end{equation}\]Indeed,
\[\begin{eqnarray} \forall \theta \in \Theta, \ \int_{\mathbb{R}^{m-1}} \mathrm{E}_{(b, \theta^{*})} \left[ \left. T_{1}\phi \right| T^{*} = t \right] \ P_{(b, \theta^{*})}^{T^{*}}(dt) & = & \int_{(T^{*})^{-1}(\mathbb{R}^{m-1})} T_{1}(x)\phi(x) \ P_{(b, \theta^{*})}(dt) \nonumber \\ & = & \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \right] \alpha . \nonumber \end{eqnarray}\]Since $T^{}$ is completewith respect to ${P_{(b, \theta^{})}}_{\theta \in \Theta^{*}}$, we obtain \eqref{chap03-theorem-03-33-equation-for-03-35} Now we show
\[\begin{equation} \forall \theta \in \Theta, \ \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} \right] = \alpha \mathrm{E}_{(b, \theta^{*})} \left[ T_{1} \mid T^{*} \right] \quad P_{(b, \theta^{*})} \text{-a.s.} \label{chap03-03-35} \end{equation}\]Indeed,
\[\begin{eqnarray} \forall \theta \in \Theta, \ \forall (T^{*})^{-1}(B) \in \sigma(T^{*}), \ \int_{(T^{*})^{-1}(B)} \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} \right] \ P_{(b, \theta^{*})}(d x) & = & \int_{(T^{*})^{-1}(B)} T_{1}\phi \ P_{(b, \theta^{*})}(d x) \nonumber \\ & = & \int_{B} \mathrm{E}_{(b, \theta^{*})} \left[ T_{1}\phi \mid T^{*} = t \right] \ P_{(b, \theta^{*})}^{T^{*}}(d t) \nonumber \\ & = & \int_{B} \alpha \mathrm{E}_{(b, \theta^{*}} \left[ T_{1} \right] \ P_{(b, \theta^{*})}^{T^{*}}(d t) \nonumber \\ & = & \int_{(T^{*})^{-1}(B)} \alpha \mathrm{E}_{(b, \theta^{*}} \left[ T_{1} \right] \ P_{(b, \theta^{*})}(d x) \end{eqnarray}\]Then by the definition of conditional expectation, we obtain \eqref{chap03-03-35}.
Let \(\vartheta_{0} := (b, b^{*}) \in \Theta_{0}\), \(\vartheta_{1} := (\theta_{1}, \theta^{*}) \in \Theta_{1}\) and \(t^{*} \in \mathbb{R}^{m - 1}\) be fixed. We denote
\[\begin{eqnarray} \Phi & := & \left\{ f: \mathbb{R}^{m} \rightarrow [0, 1] \mid f: \text{ measurable} \right\} \nonumber \\ \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{(b, b^{*})}(t^{*}, dt) & = & \alpha \label{chap03-theorem-03-33-condition-01} \\ \int_{\mathbb{R}} t f(t_{1}, t^{*}) \ P_{(b, b^{*})}(t^{*}, dt) & = & \int_{\mathbb{R}} \alpha t \ P_{(b, b^{*})}(t^{*}, dt) \label{chap03-theorem-03-33-condition-02} \\ \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}} & := & \left\{ f \in \Phi \mid f: \text{satisfies } \eqref{chap03-theorem-03-33-condition-01} \ \eqref{chap03-theorem-03-33-condition-02} \right\} \label{chap03-theorem-03-33-set-of-functions} \end{eqnarray}\]We can reduce problem to find $\bar{f} \in \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}}$ such that
\[\begin{eqnarray} \forall f \in \Phi_{\alpha}^{\vartheta_{0} \vartheta_{1}, t^{*}}, \ \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt) & \le & \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt) . \label{chap03-theorem-03-33-ump-condition} \end{eqnarray}\]Indeed, suppose that there exists such $\bar{f}$. Since the above equation holds for all $\vartheta_{1} \in \Theta_{1}$ and $t^{*} \in \mathbb{R}^{m-1}$, we have
\[\begin{eqnarray} & & \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{\theta}(t^{*}, dt) \ P_{\theta}^{T^{*}}(d t^{*}) & \le & \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\theta}(t^{*}, dt) \ P_{\theta}^{T^{*}}(d t^{*}) \nonumber \\ & \Leftrightarrow & \int_{\mathbb{R}^{m}} f(t) \ P_{\theta}^{T}(d t) & \le & \int_{\mathbb{R}^{m}} \bar{f}(t) \ P_{\theta}^{T}(d t) \nonumber \\ & \Leftrightarrow & \int_{\mathbb{R}^{m}} f(T(x)) \ P_{\theta}(d x) & \le & \int_{\mathbb{R}^{m}} \bar{f}(T(x)) \ P_{\theta}(d x) . \nonumber \end{eqnarray}\]Hence $\bar{f} \circ T$ is the UMP test. Moreover, Since $f \equiv \alpha \in \Phi_{\alpha}^{\vartheta_{0}\vartheta_{1},t^{*}}$, $\bar{f} \circ T$ is unbiased test. By \eqref{chap03-theorem-03-33-condition-02}, we have
\[\begin{eqnarray} & & \int_{\mathbb{R}^{m}} \bar{f}(T(x)) \ P_{(b, b^{*})}(d x) & \le & \alpha . \nonumber \end{eqnarray}\]Hence $\bar{f} \circ T$ is unbiased UMP at level $\alpha$.
Now we will show the existence of $\bar{f}$. Let \(\vartheta_{0} := (b, b^{*}) \in \Theta_{0}, \vartheta_{1} := (\theta_{1}, \theta^{*}) \in \Theta_{1}\) be fixed. From proposition 3.19 by taking $m_{1} = 1$, $m_{2} = m - 1$, there exists $\sigma$-finite measure \(\mu_{t^{*}}\) such that
\[\begin{eqnarray} \vartheta := \vartheta_{0}, \ \vartheta_{1}, \ N_{\vartheta} & := & \left\{ t_{m_{1}+1:m} \in \mathbb{R}^{m_{2}} \mid \int_{\mathbb{R}^{m_{1}}} \exp \left( \langle \vartheta_{1:m_{1}}, t_{1:m_{1}} \rangle \right) \ \mu_{\vartheta^{*}}(d t_{1:m_{1}}) = 0 \text{ or } \infty \right\} \nonumber \\ P_{\vartheta_{1:m}}^{T^{*}}(N_{\vartheta}) & = & 0 \nonumber \end{eqnarray}\]Let
\[\begin{eqnarray} N & := & N_{\vartheta_{0}} \cap N_{\vartheta_{1}} . \nonumber \end{eqnarray}\]Then
\[\begin{eqnarray} \vartheta := \vartheta_{0}, \ \vartheta_{1}, \ \forall t^{*} \in N^{c}, \ P_{\vartheta}(t^{*}, d t_{1}) & = & \frac{ \displaystyle \exp \left( \langle \vartheta_{1}, t_{1} \rangle \right) \nu_{t^{*}}(dt_{1}) }{ K_{\vartheta} } \nonumber \\ K_{\vartheta} & := & \displaystyle \int_{\mathbb{R}^{m_{1}}} \exp \left( \langle \vartheta_{1}, \tau_{1} \rangle \right) \nu_{t^{*}}(d\tau_{1}) \nonumber \end{eqnarray}\]By taking
- $\mu := P_{\vartheta_{1}}(t^{*}, \cdot)$,
- $g(t_{1}) := e^{(\theta_{1} - b)t_{1}} K_{\vartheta_{0}}/K_{\vartheta_{1}}$,
- $f_{1}(t_{1}) = 1$,
- $f_{2}(t_{1}) = t_{1}$,
- $c_{1} := \alpha$
- and $c_{2} := \alpha \int_{\mathbb{R}} t_{1} P_{\vartheta_{0}}(t^{*}, dt_{1})$,
$\Phi_{(c_{1}, c_{2})}$ in generalized Neyman-Peason’s lemma equals to \eqref{chap03-theorem-03-33-set-of-functions}.
\[\begin{eqnarray} \int_{\mathbb{R}} g(t) \bar{f}(t_{1}, t^{*}) \ \mu(dx) & = & \int_{\mathbb{R}} \frac{ K_{\vartheta_{0}} }{ K_{\vartheta_{1}} } e^{(\theta_{1} - b)t_{1}} \bar{f}(t_{1}, t^{*}) \frac{ e^{bt_{1}} }{ K_{\vartheta_{0}} } \ \mu_{t^{*}}(d t_{1}) \nonumber \\ & = & \int_{\mathbb{R}} e^{\theta_{1}t_{1}} \bar{f}(t_{1}, t^{*}) \frac{ 1 }{ K_{\vartheta_{1}} } \ \mu_{t^{*}}(d t_{1}) \nonumber \\ & = & \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt_{1}) \nonumber \end{eqnarray}\]Now we construct $\bar{f} \in \Phi_{\alpha}^{\vartheta_{0}, \vartheta_{1}, t^{*}}$. Let
\[\begin{eqnarray} F^{t^{*}}(z) & := & \int_{(-\infty, z]} \ P_{\vartheta_{0}}(t^{*}, dt_{1}) \nonumber \\ U_{1}^{t^{*}}(p) & := & \inf \{ z \in \mathbb{R} \mid F^{t^{*}}(z) \ge p \} \nonumber \\ U_{2}^{t^{*}}(p) & := & \inf \{ z \in \mathbb{R} \mid F^{t^{*}}(z) \ge 1 - \alpha + p \} \nonumber \\ \Gamma_{1}^{t^{*}}(p) & := & (p - F^{t^{*}}(U_{1}^{t^{*}}(p)-)) (F^{t^{*}}(U_{1}^{t^{*}}(p)) - F^{t^{*}}(U_{1}^{t^{*}}(p)-))^{-} \nonumber \\ \Gamma_{2}^{t^{*}}(p) & := & (F^{t^{*}}(U_{2}^{t^{*}}(p)) - (1 - \alpha) - p) (F^{t^{*}}(U_{2}^{t^{*}}(p)) - F^{t^{*}}(U_{2}^{t^{*}}(p)-))^{-} \nonumber \\ \Psi^{t^{*}}(t_{1}, p) & := & 1_{(-\infty, U_{1}^{t^{*}}(p))}(t) + \Gamma_{1}^{t^{*}}(p) 1_{U_{1}^{t^{*}}(p)}(t) + \Gamma_{2}^{t^{*}}(p) 1_{U_{2}^{t^{*}}(p)}(t) + 1_{(U_{2}^{t^{*}}(p)), \infty)}(t) \nonumber \\ S^{t^{*}}(p) & := & \int_{\mathbb{R}} t \Psi^{t^{*}}(t_{1}, p) \ P_{\vartheta_{0}}(t^{*}, dt_{1}) \nonumber \end{eqnarray}\]where $x^{-}$ is zero if $x=0$ otherwise $x^{-1}$. Now we show that
\[\exists p^{t^{*}} \in [0, \alpha], \ \text{ s.t. } \ S^{t^{*}}(p^{t^{*}}) = \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{*})}(dt_{1}, t^{*}) .\]It is enough to show that
- $S^{t^{*}}$ is continuous in $[0, p]$,
- If $p = 0$,
- If $p = \alpha$,
Then by intermediate value theorem, we obtain $p^{t^{*}}$. Now we define
\[\bar{p}^{t^{*}} := \inf \{ p \in [0, \alpha] \mid S^{t^{*}}(p) = \alpha \int_{\mathbb{R}} t_{1} \ P_{(b, b^{*})}(dt_{1}, t^{*}) \} .\]Finally, we constract $\bar{f}$ by
\[\bar{f}(t_{1}, t^{*}) := \Psi^{t^{*}}(t_{1}, p^{t^{*}}) .\]$\bar{f}$ satisfies \eqref{chap03-theorem-03-33-condition-01};
\[\begin{eqnarray} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{0}}(t^{*}, d t_{1}) & = & \alpha \nonumber \end{eqnarray}\]Moreover, $\bar{f}$ satisfies \eqref{chap03-theorem-03-33-condition-02} by right continuity of $\Psi$ with respect to $p$, that is,
\[\begin{eqnarray} \int_{\mathbb{R}} t \bar{f}(t_{1}, t^{*}) \ P_{\vartheta_{0}}(t^{*}, d t_{1}) & = & \alpha \int_{\mathbb{R}} t \ P_{\vartheta_{0}}(t^{*}, d t_{1}) \nonumber \end{eqnarray}\]By generalized Neyman-Peason’s lemma, the following equation holds
\[\begin{eqnarray} \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) g(t_{1}) \ P_{\vartheta_{0}}(t^{*}, dt_{1}) & = & \int_{\mathbb{R}} \bar{f}(t_{1}, t^{*}) g(t_{1}) \ P_{\vartheta_{1}}(t^{*}, dt_{1}) \nonumber \\ & = & \sup \left\{ \int_{\mathbb{R}} f(t_{1}, t^{*}) g(t_{1}) \ P_{\vartheta_{0}}(t^{*}, dt_{1}) = \int_{\mathbb{R}} f(t_{1}, t^{*}) \ P_{\vartheta_{1}}(t^{*}, dt_{1}) \mid f \in \Psi_{\alpha}^{\vartheta_{0}, \vartheta_{1}, t^{*}} \right\} \nonumber \end{eqnarray}\]This implies that \eqref{chap03-theorem-03-33-ump-condition} holds.
Appendix
Theorem A-1
- $(\mathcal{X}, \mathcal{A})$,
- measurable space
- \(\mathcal{P} := \{ P_{\theta}\}_{\theta \in \Theta}\),
- probability measure over $(\mathcal{X}, \mathcal{A})$,
- $k \in \mathbb{N}$,
- $(\mathcal{X}^{(i)}, \mathcal{A}^{(i)})$,
- measurable space for $i = 1, \ldots, k$
- \(\mathcal{P}^{(i)} := \{P_{\theta}^{(i)}\}_{\theta \in \Theta}\),
- probability measure over $(\mathcal{X}^{(i)}, \mathcal{A}^{(i)})$ for $i = 1, \ldots, k$
The following statements hold:
- (a) If $\mathcal{P}$ is an exponential family, $\forall P_{\theta}, P_{\theta^{\prime}} \in \mathcal{P}$, $P_{\theta} \ll P_{\theta^{\prime}}$, $P_{\theta} \ll P_{\theta^{\prime}}$,
- (b) If for all $i = 1, \ldots, n$, $\mathcal{P}^{(i)}$ is exponential family, then \(\{\prod_{i=1}^{n} P_{\theta}^{(i)}\}\) is an exponential family over $( \prod_{i=1}^{n} \mathcal{X}^{(i)}, \prod_{i=1}^{n} \mathcal{A}^{(i)})$.
- (c) $T$ is sufficinet with respect to $\mathcal{P}$.
proof
(a)
Let $A \in \mathcal{A}$ be fixed.
\[P_{\theta}(A) = \int_{A} \exp \left( \sum_{i=1}^{m} a_{i}(\theta) T_{i}(x) - \psi(\theta) \right) \ \mu(dx)\] \[\begin{eqnarray} \frac{ d P_{\theta} }{ d P_{\theta^{\prime}} } & = & \frac{ d P_{\theta} }{ d\mu } \frac{ 1 }{ \frac{ d P_{\theta^{\prime}} }{ d\mu } } \\ & = & \exp \left( \sum_{j=1}^{m} (a_{j}(\theta) - a_{j}(\theta^{\prime})) T_{j}(x) \right) \nonumber \end{eqnarray}\] \[P_{\theta}(A) = \int_{A} \exp \left( \sum_{j=1}^{m} (a_{j}(\theta) - a_{j}(\theta^{\prime})) T_{j}(x) \right) \ P_{\theta^{\prime}}(dx)\]The integrand is positive so that $P_{\theta^{\prime}}(A) = 0$.
(b) Let $\mathcal{C}$ be a cylinder set. That is,
\[\mathcal{C} := \{ A_{1} \times \cdots \times A_{n} \mid A_{i} \in \mathcal{A}^{(i)} \} .\]Then
\[\begin{eqnarray} \forall A_{1} \times \cdots A_{n} \in \mathcal{C}, \ \left( \prod_{i=1}^{n} P_{\theta}^{(i)} \right) (A_{1} \times \cdots A_{n}) & = & \prod_{i=1}^{n} P_{\theta}^{(i)}(A_{i}) \ (\because \text{ by definition of product measure}) \\ & = & \prod_{i=1}^{n} \left( \int_{A_{i}} \frac{ d P_{\theta}^{(i)} }{ d \mu }(x_{i}) \ \mu(d x_{i}) \right) \\ & = & \int_{A_{1}\times \cdots A_{n}} \frac{ d P_{\theta}^{(1)} }{ d \mu }(x_{1}) \times \cdots \times \frac{ d P_{\theta}^{(n)} }{ d \mu }(x_{n}) \ \mu(d x) . \nonumber \end{eqnarray}\]Therefore,
\[\frac{ d \left( \prod_{i=1}^{n} P_{\theta}^{(i)} \right) }{ d \mu } = \prod_{i=1}^{n} \left( \frac{ d P_{\theta}^{(i)} }{ d \mu } \right) .\]Obviously, the RHS of the equation is an exponential family.
(c)
Immediate consequence of factorization theorem.